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higher order beliefs game theory literature and PME

1. higher-order beliefs literature: lightning survey

1.1 e-mail game (Rubinstein 1989)
1.2 approximate common knowledge (common p-belief) Monderer

and Samet (1989)
1.3 robustness to incomplete information Kajii and Morris (1997)
1.4 global games

1.4.1 one dimensional types (Frankel, Morris and Pauzner (2003))
1.4.2 multidimensional types (Carlsson and van Damme (1993),

Oury (2013) and Veiel (2025))

2. three perturbations selecting the PME (and its
generalizations)

2.1 exogenous noise about state (global games)
2.2 endogenous information about state (information design)
2.3 endogenous noise about payments (noisy contracts)



complete information game

I set of players I = {1, 2, ..., |I |}
I for each player i ,

I action set Ai (finite)
I payoff function gi : A→ R

I where A = A1 × ...× A|I |
I this is a complete information game g =

(
g1, ..., g|I |

)
.



p-dominance
I let p =

(
p1,p2, ..., p|I |

)
∈ [0, 1]I

Definition
A (pure strategy) Nash equilibrium a∗ of g is p-dominant if

pigi (a∗i , a
∗
−i )+ (1− pi ) gi (a∗i , a−i ) ≥ pigi (ai , a∗−i )+ (1− pi ) gi (ai , a−i )

for all i , ai and a−i

I if a∗ is 0-dominant Nash equilibrium, then a∗ is a (weakly)
dominant strategy equilibrium

I if a∗ is a 1-dominant Nash equilibrium, then a∗ is a Nash
equilibrium

I if a∗ is a p-dominant Nash equilibrium for any p < 1, then a∗

is a strict Nash equilibrium
I if a∗ is a (p1, p2)-dominant Nash equilibrium in a 2× 2 game
with p1 + p2 ≤ 1, then a∗ is a risk dominant and potential
maximiziing equilibrium



incomplete information game

I fix players and actions as before
I add for each player i ,

I a countable set of types: Ti
I a payoff function ui : A× T → R

I common prior on T = T1 × T2 × ....× T|I |
I incomplete information game: (T ;P,u)



incomplete information game equilibrium

I i’s strategy σi : Ti → ∆ (Ai ); set of all strategies Σi
I interim utility

Ui (ai , σ−i |ti ) = ∑
t−i

P (t−i |ti ) ui ((ai , σ−i (t−i )) , (ti , t−i ))

I best responses

BRi (σ−i |ti ) =
{
ai ∈ Ai |Ui (ai , σ−i |ti ) ≥ Ui

(
a′i , σ−i |ti

)
for all a′i

}
I σ ∈ Σ is a Bayes Nash equilibrium of (T ;P,u) if, for all i ∈ I ,
all ai ∈ Ai and ti ∈ Ti , σi (ai |ti ) > 0⇒ ai ∈ BRi (σ−i |ti ).



equilibrium action distribution

I Any (T ;P,u) has at least one BNE
I Action distribution ξ ∈ ∆ (A) is induced by strategy profile σ
of (T ;P,u) if

ξ (a) = ∑
t
P (t) σ (a|t)

I ξ ∈ ∆ (A) is an equilibrium action distribution of (T ;P,u) if
it is induced by a Bayes Nash equilibrium σ of (T ;P,u)



elaborations

I given g and (T ;P,u), let

T gii =
{
ti ∈ Ti

ui (a, ti , t−i ) = gi (a) for all a ∈ A and
for all t−i ∈ T−i with P (t−i |ti )

}
and T g = ∏

i∈I
T gii

I (T ;P,u) is an ε-elaboration of g if P [T g] ≥ 1− ε



electronic mail game

(Rubinstein 1989) variation

I if the "state" is bad, two players have a dominant strategy to
not invest

bad invest not invest
invest −c −c
not invest 0 0

where c > 1
2 .

I if the "state" is good, each player has a best response if the
other firm invests:

good invest not invest
invest 1− c −c
not invest 0 0



information structure 1

I with probability ε, the state is bad; with probability 1− ε the
state is good

I if the state is bad, player 1 knows and sends a message telling
player 2

I if player 2 receives a message, who sends a confirmation of
receipt to player 1

I if player 1 receives a message, who sends a confirmation of
receiving the confirmation to player 1

I and so on....
I each message gets lost with probability ε



information structure 2

I let tk1 be the type of player 1 who has sent k messages
I let tk2 be the type of player 2 who has received k messages

t02 t12 tk2 tk+12
t01 ε 0 · 0 0 ·
t1 ε (1− ε) ε (1− ε)2 · 0 0 ·

· · · · · ·
tk1 0 0 · ε (1− ε)2k 0 ·
tk+11 0 0 · ε (1− ε)2k+1 ε (1− ε)2k+2 ·

· · · · · ·



unique equilibrium

I game has unique equilibrium where both players never invest
I in fact, this is the unique strategy profile surviving iterated
deletion of strictly dominated strategies

I argument by induction:



unique equilibrium

I initial observation: if you assign probability 1
2−ε <

1
2 to the

state being good and your co-player investing, you will not
invest since the payoff is at most 12 − c < 0

I now type t01 of player 1 will not invest because she knows that
the state is bad

I type t02 of player 2 will not invest because he knows that the
state is bad with probability 1−ε

2−ε

I now argue by induction if that types t01 , ...., t
k
1 of player 1 do

not invest and types t02 , ...., t
k
2 of player 2 do not invest.....

I type tk+11 of player 1 will never invest because he assigns at
least probability 1−ε

2−ε to player 2 not investing
I type tk+12 of player 2 will never invest because she assigns at
least probability 1−ε

2−ε to player 1 not investing

I claim follows by induction



paradox?

I types tk1 and t
k
2 do not invest in spite of have (k − 1)th level

knowledge that the state is good
I for large k, Rubinstein (1989) says

I there is "approximate common knowledge" that the state is
good

I it is a paradoxical prediction that players do not invest; they
surely will in practise

I but maybe the confirmation problem is real?
I experiments mixed....



approximate common knowledge: a "correct" definition?

I high levels of knowledge is not close to common knowledge in
terms of game theory. what is the "right" definition of
approximate common knowledge?

I Monderer and Samet’s (1989) alternative definition of
approximate common knowledge (slight generalization):

I let p =
(
p1,p2, ..., p|I |

)
∈ [0, 1]I

I an event is p-believed if everyone assigns it probability at least
p.....

I an event is common p-belief if it is p-believed, it is p-believed
that it is p-believed, and so on.

I an event is "approximate common knowledge" if it is common
p-belief with each pi close to 1



approximate common knowledge: formal definition

I write Bp(E ) for the event where the event E ⊆ T is
p-believed

I iterative defination:
Cp(E ) = ∩

I fixed point characterization (or alternative definition):
I say that E is p-evident if E ⊆ Bp (E )
I t ∈ Cp(E ) if and only if there exists p-evident event F such
that t ∈ F and F ⊆ Bp (E )



approximate common knowledge

Lemma
Suppose that a∗ is a p-dominant Nash equilibrium of g. Any
game of incomplete information has a Bayes-Nash equilibrium
where a∗ is played whenever there is common p-belief of T g.

so this is the correct way of defining being close to common
knowledge?.



topologies on information structures

I we would like to know the coarsest topology on information
structures that generates continuity of economic outcomes;
i.e., in two information structures are close, then for any game
and any fixed equilibrium of that game and information
structure, there is an approximate equilibrium of that game
and the other information structure generating behavior close
to the fixed equilibrium.

I meta-claim: if two information structures (type spaces) are
close if there is approximate common knowledge that their
interim beliefs are close

I Monderer and Samet (1996) and Kajii and Morris (1998)
prove results of this form for ad hoc classes of information
structures

I Bergemann, Morris and Veiel (2025) prove "correct" version
of meta-claim



another email game paradox?

I although the probability that payoffs were given by g was
arbitrarily close to 1 (as ε→ 0), there was no equilibrium
where (I , I ) was played with positive probability.

I but (I , I ) was a risk dominated equilibrium
I the argument wouldn’t have worked if (I , I ) was risk dominant
I more generally, are there some equilibria of the complete
information game that are not sensitive to small probability (if
large) perturbations?



robustness to incomplete information: definition

I for ξ, ξ ′, write
∥∥ξ − ξ ′

∥∥ = max
a∈A

∣∣ξ (a)− ξ ′ (a)
∣∣

Definition
Nash equilibrium ξ ∈ ∆ (A) is robust to incomplete information in
g if, for any δ > 0, there exists ε > 0 such that for all ε ≤ ε, and
ε−elaboration of g has an equilibrium action distribution
ξ ′ ∈ ∆ (A) such that

∥∥ξ − ξ ′
∥∥ ≤ δ.

I we have already seen a risk dominated Nash equilibrium that
is not robust



robustness to incomplete information: existence

I robust equilibria do not exist in some complete information
games (consider two player three action cyclic matching
pennies)

I if g has a unique correlated equilibrium, it is (a Nash
equilibrium) that is robust to incomplete information.



critical path result

For any information structure (T ,P) and any event E ⊆ T

P [Cp (E )] ≥ 1−
1−min

i
pi

1−∑
i∈I
pi
[1− P (E )]

Oyama and Takahashi (2020) provide a more understandable proof
that Kajii and Morris (1997)

I so if ∑
i∈I
pi < 1, if P (E ) ≈ 1, then P [Cp (E )] ≈ 1



intuition for critical path result

t02 t12 tk2 tk+12
t01 ε 0 · 0 0 ·
t1

p1
1−p1 ε p1

1−p1
p2
1−p2 ε · 0 0 ·

· · · · · ·
tk1 0 0 ·

(
p1
1−p1

)k ( p2
1−p2

)k
ε 0 ·

tk+11 0 0 ·
(

p1
1−p1

)k+1 ( p2
1−p2

)k
ε
(

p1
1−p1

)k+1 ( p2
1−p2

)k+1
ε ·

· · · · · ·



adding up probabilities

if p1 + p2 < 1, then
p1
1−p1

p2
1−p2 < 1 and infinite sum of probabilities

is bounded.
if p1 + p2 > 1, then

p1
1−p1

p2
1−p2 > 1 and infinite sum of probabilities

is unbounded.



more suffi cient conditions for robustness

I [Ui (2000)] If g is a potential game, and a is a potential
maximizing equilibrium of g, then a is robust to incomplete
information [Ui (2000)]

I [Morris and Ui (2005)] If A∗ is a generalized potential
maximizing action set profile of g, then A∗ is robust to
incomplete information (encompasses Kajii-Morris and Ui
2000 results)

I and more generalizations....
I these results provide suffi cient conditions for robustness, but
are not necessary conditions



monotone potential games

I All play 1 is a monotone potential maximizer of BAS game g
if there exist a monotone potential P : {0, 1}I → R and
weights w ∈ RI

++ such that for all i ∈ I ,

widi (S) ≥ P (S ∪ {i})− P (S)

for all S ⊆ I\ {i}; and P (I ) > P(S) for all S 6= I
I All play 1 is robust to incomplete information in BAS game g
if and only if it is a monotone potential maximizer (Oyama
and Takahashi (2020))

I "Does one Soros make a difference..." is not a monotone
potential game



one dimensional global games

1. action sets Ai are ordered

2. state space Θ = R

3. state monotonic payoffs: ui (ai , a−i , θ)− ui (a′i , a−i , θ) is
increasing in θ for all i , ai > a′i and a−i

4. supermodular payoffs: ui (ai , a−i , θ)− ui (a′i , a−i , θ) is
increasing in a−i for all i , ai > a′i and θ

5. dominance regions: action ai (ai ) is dominant for suffi ciently
large (small) θ,

6. let θ be distributed according to smooth density g (.)

7. let players observe signals xi = θ + σεi , where σ > 0 and each
εi is distributed according to density fi (.)

8. add some strong continuity + strictness properties



one-dimensional global games (Frankel, Morris and
Pauzner (2003))

1. action sets Ai are ordered

2. state space Θ = R

3. state monotonic payoffs: ui (ai , a−i , θ)− ui (a′i , a−i , θ) is
increasing in θ for all i , ai > a′i and a−i

4. supermodular payoffs: ui (ai , a−i , θ)− ui (a′i , a−i , θ) is
increasing in a−i for all i , ai > a′i and θ

5. dominance regions: action ai (ai ) is dominant for suffi ciently
large (small) θ,

6. let θ be distributed according to smooth density g (.)

7. let players observe signals xi = θ + σεi , where σ > 0 and each
εi is distributed according to density fi (.)

8. add some strong continuity + strictness properties



one-dimensional global games

game is parameterized by level of noise σ > 0 and
f =

(
f1, f2, ..., f|I |

)
I Two important properties:

1. LIMIT UNIQUENESS: in the limit as σ→ 0, there is an
essentially unique strategy profile

(
sfi

)
i∈I

surviving iterated

deletion of dominated strategies
2. NOISE INDEPENDENT SELECTION: the limit equilibrium(

sfi

)
i∈I

does not depend on the structure of noise



one-dimensional global games

I limit uniqueness always holds
I noise independent selection does not hold in general
I noise independent selection holds if u (·, θ) has an equilibrium
that is robust to incomplete information, i.e., if u (·, θ) has a
(perhaps generalized) potential maximizing equilibrium

I if there is noise independent selection, we will say that the
induced selection is the FMP selection



two key steps in proof

I as noise goes to zero, as if there is a uniform prior
I if not unique, there is a largest and smallest strategy profile

I show contradiction by translation



applications

I "most" applications are symmetric across players
I in this case, noise independent selection holds



global games and email game

I Rani Spiegler book observes that email game is treated as a
curiosity while global games are treated as substantive applied
theory applications

I what do we conclude from this?



multi-dimensional global games

I Carllson and van Damme (1993) considered 8 dimensional
payoff space (for 2× 2 games) and multidimensional noise

I Oury (2013) and Veiel (2025) return to multidimensional
global game models

1. Oury (2013): fixed FMP setting but allowed multidimensional
noise

I limit uniqueness holds only if there is noise independent
selection in the one-dimensional game

I example shows failure of limit uniqueness otherwise

2. Veiel (2025) limit uniqueness only if there exists generalized
ordinal potential in two player games



two perturbations of a complete information game

I Fix a supermodular complete information game g
I Add two perturbations:

1. Small uncertainty about payoffs: Fix global game payoff
function u (., θ), where u (., θ∗) = g. Let θ be drawn
according to a smooth distribution hε which assigns probability
1− ε to the interval [θ∗ − ε, θ∗ + ε]

2. Noisy information: players observe noisy signal xi = θ + σηi
where ηi ∼ fi (·) for small σ

I If a∗ is a PME of g, a∗ will be played with probability 1 in
limit as ε→ 0 and σ→ 0.

I also true for generalizations of PME



three interpretations of perturbations

1. both perturbations are exogenous (Carlsson and van Damme
(1993))

2. exogenous payoff uncertainty but information structure is
chosen by designer (Morris, Oyama and Takahashi (2024)

I information design with adversarial equilibrium selection

3. both perturbations are endogenous (Halac, Lipnowski and
Rappaport 2021)

I design chooses perturbations to payoffs and noise structure


	three perturbation

