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potential games

I "potential games" are games where best responses are the
same as they would be if players had a common payoff
function (the "potential" P).

I potential games will generally have multiple equilibria
I but there will "typically" be only one that maximizes the
potential function (the potential maximizing equilibrium, or
PME)



potential games

Monderer and Shapley (1996) introduced the "potential game"
language and wrote that the existence of a potential function

raises the natural question about the economic content
(or interpretation) of P: What do firms try to maximize?
We do not have an answer to this question. However, it
is clear that the mere existence of a potential function
helps us (and the players) to better analyze the game.



potential games

I my two lectures review Monderer and Shapley (1996) and
experimental and theoretical (learning and higher-order belief)
literatures that suggest selection of PME and generalizations
thereof

1. today: potential games overview, experiments, some selection
2. tomorrow: review "higher-order belief" theoretical justification
for PME: overview of literature on "robustness to incomplete
information" and global games (as well as a connection to
information design and noisy contract design)

I perhaps you would consider joining me in taking potential
maximizing equilibria (PME) as a selection criterion?



outline

I lecture 1

1. definition of "potential games"
2. examples
3. myopic learning
4. experiments
5. binary action supermodular (BAS) games
6. generalized potential games

I lecture 2



outline

I lecture 1
I lecture 2

1. higher order beliefs in game theory
2. email game and global games (Rubinstein (1989) and Carlsson
and van Damme (1993))

3. robustness to incomplete information (Kajii and Morris (1997))
and global games with multidimensional types (Oury (2013)
and Veiel (2025))



game

I set of players I = {1, 2, ..., |I |}
I for each player i ,

I action set Ai (sometimes but not always finite)
I payoff function gi : A→ R

I where A = A1 × ...× A|I |
I this is (finite) game g =

(
g1, ..., g|I |

)
.



notation

I we will write expressions like A−i = ×
j 6=i
Ai , a−i ∈ A−i

I a mixed strategy is a probability distribution over actions

αi ∈ ∆ (Ai )

I so a mixed strategy profile is:

α ∈ ×
i∈I

∆ (Ai )

I we will abuse notion by writing expressions like

gi (ai , α−i ) = ∑
a−i∈A−i

(
∏
j 6=i

αj (aj )

)
gi (ai , a−i )



equilibrium

I a mixed strategy profile α ∈ ×
i∈I

∆ (Ai ) is a Nash equilibrium of

g if αi (ai ) > 0 implies

gi (ai , α−i ) ≥ gi
(
a′i , α−i

)
for all a′i ∈ Ai
I a pure strategy profile a ∈ A is a pure strategy Nash
equilibrium of g if the corresponding degenerate mixed
strategy profile is a Nash equilibrium



ordinal potential games
I function P : A→ R is an ordinal potential for the game g if,
for all i ∈ I and every a−i ∈ A−i ,

gi (ai , a−i )− gi
(
a′i , a−i

)
> 0⇔ P (ai , a−i )− P

(
a′i , a−i

)
> 0

for all ai and a′i .
I a game is an ordinal potential game if it admits an ordinal
potential

I Monderer and Shapley (1996) GEB
I lemma: If game g admits an ordinal potential P, then the set
of pure strategy Nash equilibria of g is the same as the set of
pure strategy Nash equilibria of the common interest game
with common payoff function P

I corollary 1: if the potential P of an ordinal potential game g
has a maximum, it is a pure strategy Nash equilibrium of g

I corollary 2: If a finite game g admits an ordinal potential P,
then there exists a pure strategy Nash equilibrium of g



best response potential games

I Function P : A→ R is a best response potential for the game
if, for all i ∈ I and λi ∈ ∆ (A−i ),

argmax
ai∈A−i

∑ λi (a−i ) gi (ai , a−i ) = argmax
ai∈A−i

∑ λi (a−i )P (ai , a−i )

for all ai and a′i .
I A game is a best response potential game if it admits a best
response potential.

I Morris and Ui (2004) GEB
I If a game g admits a best response potential P, the set of
Nash equilibria of g is the same as the set of Nash equilibria
of the common interest game with common payoff function P.



weighted potential games

I Function P : A→ R is an weighted potential for the game g
if there exist weights (wi )i∈I ∈ RI such that, for all i ∈ I and
every a−i ∈ A−i ,

gi (ai , a−i )− gi
(
a′i , a−i

)
= wi

(
P (ai , a−i )− P

(
a′i , a−i

))
for all ai and a′i .

I A game is a weighted potential game if it admits an weighted
potential.

I Monderer and Shapley (1996) GEB
I If a game g admits a weighted potential P, the set of Nash
equilibria of g is the same as the set of Nash equilibria of the
common interest game with common payoff function P.



weighted potential games and best response potential
games

I A weighted potential is a best response potential
I A best response potential may not be a weighted potential; (i)
a best response potential puts no restrictions on dominated
strategies (will discuss when this matters later); (ii) weights
can also depend on actions for best response potential

I will discuss when the distinction matters later



exact potential games

I function P : A→ R is an (exact) potential for the game g if,
for all i ∈ I and every a−i ∈ A−i ,

gi (ai , a−i )− gi
(
a′i , a−i

)
= P (ai , a−i )− P

(
a′i , a−i

)
for all ai and a′i .

I an (exact) potential is a weighted potential
I an (exact) potential may not be a weighted potential
I a game is an (exact) potential game if it admits an (exact)
potential.

I Monderer and Shapley (1996) GEB
I if a game g admits an exact potential, then the set of Nash
equilibria of g is the same as the set of Nash equilibria of the
common interest game with common payoff function P.



Potential Maximizing Equilibria

I if game g is an ordinal potential game, there may be many
potential functions establishing it

I game g has at most one (exact) potential, up to affi ne
transformations

I this means that the following observation is well-defined (i.e.,
independent of the choice of potential)

I a mixed strategy profile α ∈ ×
i∈I

∆ (Ai ) is a potential

maximizing (Nash) equilibrium (PME) of (exact) potential
game g if

α ∈ argmax
α′∈×

i∈I
∆(Ai )

P
(
α′
)



Cournot game

I actions are (strictly positive) output choices Ai = R++

I price depends on aggregate output, Q = a1 + ..+ a|I |, with
inverse demand curve F : R++ → R++

I note: no restrictions on F
I payoffs are

gi (a) =
(
F
(
a1 + ..+ a|I |

)
− c
)
ai

I thus there is a constant and common marginal cost for each
firm/player



ordinal potential

I an ordinal potential function is

P
(
a1, a2, ..., a|I |

)
= a1a2...a|I |

(
F
(
a1 + ..+ a|I |

)
− c
)

I this is not exact potential (or best response potential)



linear demand Cournot game with general differentiable
cost

I let’s add requirement that inverse demand curve be linear, i.e.,

F (Q) = d − bQ

for some d , b > 0
I but let’s generalize assumption about costs: let ci : Ai → R+

be arbitrary heterogeneous convex differentiable cost functions
I payoffs are

gi (a) =
(
d − b

(
a1 + ..+ a|I |

))
ai − ci (ai )



exact potential

I exact potential function

P (a) = d∑
i∈I
ai − b∑

i∈I
a2i − b ∑

1≤i<j≤|I |
aiaj −∑

i∈I
ci (ai )

I check best response: ai solves FOC

d − bEi

(
∑
j 6=i
aj

)
− 2bai = c ′i (ai )



two by two games
I consider two player two action games
I i.e., consider game

L R
U a, b c, d
D e, f g , h

I suppose that there are two strict Nash equilibria
I without loss assume that (U, L) and (D,R) are strict Nash
equilibria

I so a > e, g > c , b > d and h > f

I this game is "best response equivalent" to

L R
U a− e, b− d 0, 0
D 0, 0 g − c, h− f



two by two games

I action U is a best response for player 1 if and only if he
assigns probability at least p1 =

g−c
(g−c )+(a−e) ∈ (0, 1) to player

2 choosing L
I action L is a best response for player 2 if and only if he
assigns probability at least p2 = h−f

(h−f )+(b−d ) ∈ (0, 1) to
player 1 choosing U

I so the game is best response equivalent to

L R
U 1− p1, 1− p2 0, 0
D 0, 0 p1, p2



two by two games

I Harsanyi and Selten (1988) said that (U, L) was risk
dominant if p1 + p2 ≤ 1

I Harsanyi and Selten (1988) had an axiomatic justification for
risk dominant selection in two by two games; and a
(somewhat baroque and not widely used) "tracing procedure"
generalizing it to all games

I risk dominant equilibrium in 2x2 game is potential maximizing
equilibrium

I suppose (without loss) that (U, L) is risk dominant



two by two games

I our game is an (exact) potential game with potential

P L R
U 1− p1 − p2 −p1
D −p2 0

I so the risk dominant equilibrium (U, L) is the unique potential
maximizing equilibrium if p1 + p2 < 1 If p1 + p2 = 1, both
equilibria are risk dominant and potential maximizing



myopic learning foundations of Nash equilibrium

I does a myopic learning process converge to an equilibrium?
I if the game has multiple equilibria, which gets selected?



myopic learning 1: finite improvement property

I a path is a sequence of action profiles γ =
(
a0, a1, a2, ....

)
such that for all k ≥ 1, there exists exactly one player i such
that aki 6= ak−1i

I path γ is finite if it is a finite sequence
I a0 is the initial point of γ

I if γ is finite, the last action profile is the terminal point
I game g satisfies the finite improvement property (FIP) if
every improvement path is finite

I lemma: every finite ordinal potential game has the FIP



finite improvement property

I ordinal potential not necessary for FIP
I a function P is a generalized ordinal potential for g if, for all
i ∈ I and every a−i ∈ A−i ,

gi (ai , a−i )− gi
(
a′i , a−i

)
> 0⇒ P (ai , a−i )− P

(
a′i , a−i

)
> 0

for all ai and a′i .
I lemma: FIP holds if and only if a game is a generalized
ordinal potential game.

I lemma: if gi (ai , a−i ) 6= gi (a′i , a−i ) for all i , ai , a′i and a−i ;
and g satisfies FIP, then g is an ordinal potential game



myopic learning 2: fictitious play

I a fictitious play process is a sequence of (perhaps mixed)
strategy profiles such that each player’s mixed strategy in
each period is a best response to the average mixed strategy
profile in previous periods

I early suggestion for myopic learning process converging to
Nash equilibrium

I but there are famous counterexamples in general (giving rise
to cycles)

I Monderer and Samet (1989b) theorem: fictitious play always
converges in an ordinal potential game



myopic learning 3: stochastic stability

I Kandori, Mailath and Rob (1993) Ecta and Young (2003) Ecta
I players choose best response to past population play but play
is subject to mutations or "noise"

I as noise becomes small, converge to an equilibrium
I potential maximizing equilibrium is selected



experiments: "stag hunt" games
I van Huyck, Battalio and Beil (1990)
I actions Ai = {1, 2, ..., 7} are interpreted as effort levels
I payoffs are given by

gi (a) = d min
{
a1, a2, ..., a|I |

}
− bai + c

where d > b ≥ 0 and

d − 7b+ c > 0

I a potential function is

P (a) = d min
{
a1, a2, ..., a|I |

}
− b∑

i∈I
ai

I the PME is all play 1 if d < |I | b and PME is all play 7 if
d > |I | b

I PME is played



guessing game

I same action sets
I payoffs are given by

gi (a) = dM (a)− b (M (a)− ai )2 + c

where d , b, c are positive constants and M (a) is the median
of
{
a1, a2, ..., a|I |

}
I van Huyck, Battalio and Beil (1991) conducted experiments
on this game

I if M (a) were the mean, can show this is a potential game and
all play 7 is the PME



experimental question

I how general is PME selection?
I known to occur in symmetric games, less is known about
symmetric games



binary-action supermodular games

I many economic and social problems take the form of
"coordination games"

I a leading model of "coordination games": binary-action
supermodular (BAS) game

I e.g., participate (invest, revolt, short the currency) or not
participate (not invest, stay home, sit out the market turmoil)



binary-action supermodular games

I Ai = {0, 1}: the binary-action set for player i .
I participate (1) or not participate (0)

I suffi cient statistic for payoffs in binary-action game: payoff
differences di : 2I/{i} → R

di (S) = gi (1S∪{i}, 0I/(S∪{i}))− gi (1S , 0I/S )
= gi (S ∪ ({i}))− gi (S)

I will sometimes (as above) write S ⊆ I to represent the
strategy profile where S is the set of players choosing action 1

I this reduced form of game is parameterized by d = (di )i∈I
I payoffs supermodular in action profiles (strategic
complementarities) is the requirement that payoff differences
di (S) increasing in S ⊆ I



many BAS games are (weighted) potential games (and
thus BASP games)

1. all two player BAS games are potential games (and the risk
dominant equilibrium is potential maximizing equilibria when
there are multiple equilibria

2. all symmetric BAS games many player BAS games are
potential games

I in a large population, all participate is the PME if participate is
the Laplacian action (best response to uniform belief about
number of other players’participating)

3. many interesting asymmetric BAS games are potential games
(lots of interesting economics here!) and, if not, suitably
generalized potential games

4. not all BAS games are potential games ("Does one Soros
make a difference?" REStud 2003 Corsetti, Dasupta, Morris
and Shin is BAS regime change game that does not have a
potentially maximizing equilibrium)



"investment game": a BASP game

I write n (S) for the number of elements of S
I let

di (S) = hn(S )+1 − ci
where hk is increasing in k

I let ci be the private cost of investing
I assume without loss that c1 ≤ c2 ≤ .... ≤ c|I |



investment game is a BASP game
I all invest is a Nash equilbrium if h|I | > ci for all i
I no one invest is a Nash equilibrium if h1 < ci for all i
I intermediate equilibria may also exist although we can rule
these out if we want

I both both extreme equilibria will often co-exist (when
hI >> h1)

I potential function is

P (S) =
n(S )

∑
k=1

hk −∑
i∈S
ci

I now "all invest" is potential maximizing among two extreme
equilibrium if P (I ) > P (∅), i.e.,

|I |

∑
k=1

hk > ∑
i∈I
ci



three player experiments?

I let h1 = 5, h2 = 10 and h3 = 15
I assume w.l.log. c1 ≤ c2 ≤ c3
I assume 5 < c1 ≤ c2 ≤ c3 < 15
I all invest is PME if 30 > c1 + c2 + c3



payoff matrices

matrix invest Invest Not Invest
Invest 15− c1, 15− c2, 15− c3 10− c1, 0, 10− c3
Not Invest 0, 10− c2, 10− c3 0, 0, 5− c3

matrix not invest] Invest Not Invest
Invest 10− c1, 10− c2, 0 5− c1, 0, 0
Not Invest 0, 5− c2, 0 0

1 chooses row, 2 chooses column, 3 chooses matrix



examples for experiment: symmetric

I If c1 = c2 = c3 = 9,

matrix invest Invest Not Invest
Invest 6, 6, 6 1, 0, 1
Not Invest 0, 1, 1 0, 0,−4

matrix not invest] Invest Not Invest
Invest 1, 1, 1 −4, 0, 0
Not Invest 0,−4, 0 0

all invest is PME
I If c1 = c2 = c3 = 11,

matrix invest Invest Not Invest
Invest 4, 4, 4 −1, 0,−1
Not Invest 0,−1,−1 0, 0,−6

matrix not invest] Invest Not Invest
Invest 1, 1, 1 −6, 0, 0
Not Invest 0,−6, 0 0

all invest is PME



examples for experiment: asymmetric

I If c1 = 6, c2 = 9 and c3 = 14,

matrix invest Invest Not Invest
Invest 9, 6, 1 4, 0,−4
Not Invest 0, 1,−4 0, 0,−9

matrix not invest] Invest Not Invest
Invest 4, 1,−4 −1, 0, 0
Not Invest 0,−4, 0 0

all invest is PME
I If c1 = 6, c2 = 11 and c3 = 14,

matrix invest Invest Not Invest
Invest 9, 4, 1 4, 0,−4
Not Invest 0,−1,−4 0, 0,−9

matrix not invest] Invest Not Invest
Invest 4,−1,−4 −1, 0, 0
Not Invest 0,−6, 0 0

no investment is PME



new experiment

Frank Heinemann (2024) "An experimental test of the global-game
selection in coordination games with asymmetric players" JEBO.

I not potential games
I but bottom line is that players choose Laplacian actions in
symmetric games (where they would be potential maximizing
in potential games) but also in asymmetric ones.



Frank’s predictions

I If c1 = c2 = c3 = 9,

matrix invest Invest Not Invest
Invest 6, 6, 6 1, 0, 1
Not Invest 0, 1, 1 0, 0,−4

matrix not invest] Invest Not Invest
Invest 1, 1, 1 −4, 0, 0
Not Invest 0,−4, 0 0

all invest is PME , Frank predicts all invest
I If c1 = c2 = c3 = 11,

matrix invest Invest Not Invest
Invest 4, 4, 4 −1, 0,−1
Not Invest 0,−1,−1 0, 0,−6

matrix not invest] Invest Not Invest
Invest 1, 1, 1 −6, 0, 0
Not Invest 0,−6, 0 0

no investment is PME , Frank predicts no investment



examples for experiment: asymmetric

If c1 = 6, c2 = 9 and c3 = 14,

matrix invest Invest Not Invest
Invest 9, 6, 1 4, 0,−4
Not Invest 0, 1,−4 0, 0,−9

matrix not invest] Invest Not Invest
Invest 4, 1,−4 −1, 0, 0
Not Invest 0,−4, 0 0

all invest is PME , Frank predicts all invest

I If c1 = 6, c2 = 11 and c3 = 14,

matrix invest Invest Not Invest
Invest 9, 4, 1 4, 0,−4
Not Invest 0,−1,−4 0, 0,−9

matrix not invest] Invest Not Invest
Invest 4,−1,−4 −1, 0, 0
Not Invest 0,−6, 0 0

no investment is PME , Frank predicts no investment



one last example: team problem

I interpret participation as unobserved effort decision of a team
member in a project

I let π (S) be the probability of success if S is the set of players
who exert effort

I let bi > 0 be a bonus offered to team member i if the project
is successful

I let ci be the private cost of exerting effort for player i
I so payoffs are:

gi (S) =
{
biπ (S)− ci , if i ∈ S
biπ (S) , if i /∈ S

I payoff differences

di (S) = bi (π (S ∪ {i})− π (S))− ci



team problem

I not an exact potential game
I but best response equivalent to game with

di (S) = π (S ∪ {i})− π (S)− ci
bi

I thus this is weighted potential game with weights wi = bi and

P (S) = π (S)−∑
i∈S

ci
bi



best response potential games

I Function P : A→ R is a best response potential for the game
if, for all i ∈ I and λi ∈ ∆ (A−i ),

argmax
ai∈A−i

∑ λi (a−i ) gi (ai , a−i ) = argmax
ai∈A−i

∑ λi (a−i )P (ai , a−i )

for all ai and a′i .
I A game is a best response potential game if it admits a best
response potential.



better response potential games

I one more kind of potential game
I function P : A→ R is a better response potential for the
game if, for all i ∈ I and λi ∈ ∆ (A−i ),

∑ λi (a−i )
[
gi (ai , a−i )− gi

(
a′i , a−i

)]
≥ 0⇔∑ λi (a−i )

[
P (ai , a−i )− P

(
a′i , a−i

)]
≥ 0

for all ai and a′i .
I a game is a best response potential game if it admits a better
response potential.



better response potential games

I fix a game g; say that the undominated version of g is the
game where we delete all strictly dominated actions for all
players

I a game is a better-response potential game if and only if the
undominated version of the game is a weighted potential game

I duality argument: by Farkas’lemma



best response potential games

I now restrict attention to games without strictly dominated
strategies

I if two actions best response regions in ∆ (A−i ) touch each
other, this imposes a linear algebraic restriction on payoff
differences

I but if few regions meet, there are fewer restrictions
I consider games with strategic complementarities and strictly
concave-in-own-action payoffs



monotone potential games

I Fix a BAS game
I Let S maximize a potential V
I S is a monotone potential maximizer if

di (S) ≥ P (S ∪ {i})− P (S) ≥ 0

if i /∈ S and

di (S) ≤ P (S)− P (S\ {i}) ≤ 0

if i ∈ S
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