
Supplementary appendices for
‘Agenda-manipulation in ranking’

Gregorio Curello
University of Bonn

Ludvig Sinander
University of Oxford

E Proofs of Propositions 1 and 2 (§6)

In this appendix, we establish tightness for the characterisations of regret-
freeness in Theorems 2 and 3. We begin in §E.1 with a lemma, then use it to
deduce Proposition 2 (§E.2) and Proposition 1 (§E.3).

E.1 A lemma

Definition 10. Given a proto-ranking R and alternatives x � y and z 6= w,
say that {z, w} makes {x, y} an error at R iff both x 6R y 6R x and z 6R w 6R z,
and one of the following holds:

– x � z � y, y 6R z 6R x, and w ∈ {x, y}.

– z � y, x R z and w = y.

– x � z, z R y and w = x.

If {z, w} makes {x, y} an error, then offering {x, y} either misses an
opportunity or takes a risk at R, and the chair ‘should’ offer {z, w} instead.39

Recall from appendix C.1 the definition of a missed opportunity.

Lemma 8. Let R be a proto-ranking, and let A ⊆ X 2 be a non-empty set of
pairs of distinct alternatives. Suppose that for any pair {x, y} ∈ A, there is a
pair {z, w} ∈ A that makes {x, y} an error at R. Then R contains a missed
opportunity.

Proof. Let R and A satisfy the hypothesis. Then there is a pair {z, w} ∈ A
and another pair {z′, w′} ∈ A that makes {z, w} an error at R. Assume
(wlog) that z � w and z′ � w′. Since {z, w} 6= {z′, w′}, we must have either
z 6= z′ or w 6= w′. Assume that z 6= z′; the case w 6= w′ is similar.

First claim. There exists a sequence (xt)Tt=1 in X with T ≥ 2 and x1 6= x2
such that for every t ≤ T , writing xT+1 := x1,

39This is heuristic, as offering {z, w} might itself miss an opportunity or take a risk at R.
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(i) if xt � xt+1 then xt+1 6R xt, and

(ii) if xt+1 � xt then xt R xt+1.

Proof of the first claim. Define {x1, y1} := {z, w} and {x2, y2} := {z′, w′}.
By the hypothesis of the lemma, there is a pair {x3, y3} ∈ A with (wlog)
x3 � y3 that makes {x2, y2} an error at R, a {x4, y4} ∈ A with x4 � y4
that makes {x3, y3} an error at R, and so on. Since A is finite, {x1, y1}
makes {xT , yT } an error for some T ∈ N. We have T ≥ 2 and x1 6= x2 by
construction, and (i)–(ii) must hold because {xt+1, yt+1} makes {xt, yt} an
error at R. �

Let (xt)Tt=1 be a minimal sequence satisfying the conditions of the first
claim (one with no strict subsequence that satisfies the conditions).

Second claim. xt 6= xs for all distinct t, s ∈ {1, . . . , T}.

Proof of the second claim. Suppose toward a contradiction that xt = xt+1;
then the sequence x1, . . . , xt−1, xt+1, . . . , xT satisfies the conditions of the
first claim, contradicting the minimality of (xt)Tt=1. Assume for the remainder
that xt 6= xt+1 for every t ∈ {1, . . . , T}.

Suppose toward a contradiction that xt = xs, where t + 1 < s. Then
the sequence xt+1, . . . , xs satisfies the conditions of the first claim, which is
absurd since (xt)Tt=1 is minimal. �

In light of the second claim, we may re-label the sequence (xt)Tt=1 so that
x1 � xt for every t ∈ {2, . . . , T}. Let t′ ≤ T be the least t ≥ 2 such that
xT � xT−1 � · · · � xt. (So t′ = T exactly if xT−1 � xT .) We shall show that
{x1, xt′} is a missed opportunity in R; in particular, that t′ ≥ 3 and

(a) x1 � xt′−1 � xt′ ,

(b) xt′ R x1, and

(c) xt′ 6R xt′−1 6R x1.

For (b), if t′ = T then xt′ = xT R x1 by property (ii), and if not then
xt′ R · · · R xT R x1 by property (ii), whence xt′ R x1 by transitivity of R.
The second half of (a) (i.e. xt′−1 � xt′) holds by definition of t′. The first
half of (c) (i.e. xt′ 6R xt′−1) then follows by property (i). Since xt′ R x1, it
follows that t′ − 1 6= 1, which is to say that t′ ≥ 3. The first half of (a) (i.e.
x1 � xt′−1) then holds by construction. Finally, the second half of (c) (i.e.
xt′−1 6R x1) must hold since otherwise the sequence (xt)t

′−1
t=1 would satisfy the

conditions of the first claim, contradicting the minimality of (xt)Tt=1. �
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E.2 Proof of Proposition 2 (p. 14)

At a history at which the chair has committed no errors, the proto-ranking
clearly contains no missed opportunities. The following therefore implies
Proposition 2.

Proposition 2?. Let R be a non-total proto-ranking containing no missed
opportunities. Then there exist distinct x, y ∈ X such that x 6R y 6R x and
offering a vote on {x, y} neither misses an opportunity nor takes a risk at R.

Proof. Let R be a non-total proto-ranking, and suppose that for any distinct
x, y ∈ X with x 6R y 6R x, offering a vote on {x, y} either misses an opportunity
or takes a risk at R. We shall show that R contains a missed opportunity.

Let A be the set of all pairs {x, y} ⊆ X with x 6= y and x 6R y 6R x. The
set A is non-empty since R is not total. By hypothesis, for any {x, y} ∈ A,
offering {x, y} either misses an opportunity or takes a risk at R, implying
that some {z, w} ∈ A makes {x, y} an error at R. It follows by Lemma 8
(§E.1, p. 1) that R contains a missed opportunity. �

E.3 Proof of Proposition 1 (p. 12)

Lemma 9. Fix a majority will W , let R be a W -reachable W -efficient
ranking, and let R′ ⊆ R be a non-total proto-ranking containing no missed
opportunities. Then there exist distinct x, y ∈ X such that x 6R′ y 6R′ x, W
and R agree on {x, y}, and offering {x, y} does not miss an opportunity or
take a risk at R′.

Proof of Proposition 1. Fix a majority willW and aW -reachableW -efficient
ranking R. By Proposition 2 (already proved), it suffices to find a terminal
history ((xt, yt))Tt=1, with associated proto-rankings (Rt)Tt=0,40 such that

– for every t ∈ {1, . . . , T}, xt W yt and xt R yt, and

– for every t ∈ {2, . . . , T}, offering {xt, yt} does not miss an opportunity
or take a risk at Rt−1.

Such a terminal history is obtained by repeatedly applying Lemma 9. �

Proof of Lemma 9. We shall prove the contra-positive. Fix a majority will
W and a W -reachable W -efficient ranking R, and let R′ ⊆ R be a non-total
proto-ranking. Suppose that for any distinct x, y ∈ X with x 6R′ y 6R′ x such
that W and R agree on {x, y}, offering {x, y} misses an opportunity or takes
a risk at R′. We will show that R′ contains a missed opportunity.

Let A be the set of all pairs {x, y} ⊆ X such that x � y, x 6R′ y 6R′ x,
and there is no z ∈ X such that x R z R y. (So A is a set of two-element

40Recall that R0 = ∅ and that Rt is the transitive closure of
⋃t

s=1{(xs, ys)}, for each t.
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subsets of X .) The set A is non-empty since it includes any R-adjacent pair
{x, y} with x 6R′ y 6R′ x, and there must be such a pair since R′ is non-total
and R′ ⊆ R. By Lemma 8 (§E.1, p. 1), it suffices to show that for any pair
{x, y} ∈ A, there is a pair {z, w} ∈ A that makes {x, y} an error at R′.

So fix a pair {x, y} ∈ A. We claim that W and R must agree on {x, y}.
If x, y are R-adjacent, then this holds by Observation 1 (appendix B.3) since
R is W -reachable. If x, y are not R-adjacent, then since no z ∈ X satisfies
x R z R y, it must be that y R x. Since x � y and R is W -efficient, it follows
that y W x, so that W and R agree on {x, y}.

It follows from the (contra-positive) hypothesis that offering {x, y} either
misses an opportunity or takes a risk at R′. Consider each in turn.

Case 1: {x, y} misses an opportunity. In this case there is a z ∈ X
satisfying x � z � y and y 6R′ z 6R′ x. Since {x, y} ∈ A, we must have either
z R x or y R z. Assume that z R x; the case y R z is analogous. Since
R′ ⊆ R, we have x 6R′ z 6R′ x. Thus the pair {x, z} lives in A and makes
{x, y} an error at R′.

Case 2: {x, y} takes a risk. Assume that there is a z ∈ X such that z � y,
x R′ z and y 6R′ z; the case in which x � z, z R′ y and z 6R′ x is similar.
Then {y, z} makes {x, y} an error at R′. To see that {y, z} belongs to A,
observe that (i) z � y and y 6R′ z, that (ii) z 6R′ y since otherwise x R′ z
and the transitivity of R′ would imply the falsehood x R′ y, and that (iii)
y R z since {x, y} ∈ A and x R z (as x R′ z and R′ ⊆ R), so that there is
no z′ ∈ X such that z R z′ R y. �

F Relation to ranking methods

In this appendix, we investigate the link with the social choice literature
mentioned in §1.1. We recast the chair’s problem as a choice among ranking
methods, characterise the constraint set of this problem, and compare its
solutions to ranking methods in the literature.

A ranking method is a map that assigns to each majority will a ranking.
Each strategy σ induces a ranking method, namely the one whose value at
a majority will W is the outcome of σ under W . Call a ranking method
ρ feasible iff it is induced by some strategy, and regret-free iff ρ(W ) is
W -unimprovable for every W . Clearly the chair’s problem in §3 can be
re-formulated as a choice between ranking methods, where the constraint
set consists of the feasible ranking methods and the objective is to choose a
regret-free one.

For a majority will W and rankings R,R′, say that R is more aligned
with W than R′ iff for any pair x, y ∈ X of alternatives with x W y, if x R′ y
then also x R y. This is exactly the definition in the text (§3.4), except that
we allow W to be any majority will (not necessarily a ranking).
Definition 11. A ranking method ρ is faithful iff for every majority will W ,
no ranking R 6= ρ(W ) is more aligned with W than ρ(W ).
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Faithfulness clearly admits a normative interpretation. It is a natural
strengthening of Condorcet consistency, the requirement that ρ(W ) rank x
highest if x W y for every alternative y 6= x. The following shows that it also
has a positive interpretation:

Observation 4. A ranking method ρ is faithful iff ρ(W ) is W -reachable for
every majority will W .

Proof. Fix a ranking method ρ and a majority will W , and write R := ρ(W ).
If R is W -reachable, then any R′ 6= R fails to be more aligned with W
since it must rank some R-adjacent pair x R y as y R′ x, where x W y by
Observation 1 (appendix B.3). If R is notW -reachable, then by Observation 1
there is an R-adjacent pair x R y such that y W x, so the ranking R′ 6= R
that agrees with R on every pair but x, y is more aligned with W . �

By Observation 4, any feasible ranking method must be faithful. The
converse does not hold, because feasibility also imposes restrictions across
majority wills. To describe these constraints, we introduce a second property:

Definition 12. A ranking method ρ is consistent iff whenever ρ(W ) 6= ρ(W ′)
for two majority wills W and W ′, there are alternatives x, y ∈ X such that
x W y W ′ x and

x ρ(W ′′) y iff x W ′′ y for every majority will W ′′ ⊇W ∩W ′.

This property is mathematically natural, but we do not think that it has
any normative appeal. Instead, it captures constraints that the rules of the
interaction impose on the chair:

Proposition 4. A ranking method is feasible iff it is faithful and consistent.

Call a ranking method ρ efficient iff ρ(W ) isW -efficient for every majority
will W . (W -efficiency is defined in §5.) By Theorem 2, a feasible ranking
method is regret-free iff it is efficient. Thus:

Corollary 3. A ranking method is feasible and regret-free iff it is faithful,
consistent and efficient.

While faithfulness has a normative interpretation, consistency and effi-
ciency are ‘positive’ in nature: the former is a constraint imposed by the rules
of the game, while the latter is defined in terms of the chair’s self-interested
preference �. This makes feasible and regret-free ranking methods quite dif-
ferent from those studied in the literature, which are characterised by purely
normative axioms (e.g. Rubinstein (1980) for the Copeland method). Indeed,
standard ranking methods such as those of Copeland and Kemeny–Slater
are neither consistent nor efficient, though the latter is faithful.
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Proof of Proposition 4. For necessity, let ρ be feasible. Then ρ is faithful by
Observation 4. To show that it is consistent, let σ be a strategy inducing
ρ, and fix majority wills W and W ′ such that ρ(W ) 6= ρ(W ′). Let t be the
first period in which the history generated by σ and W differs from that
generated by σ and W ′, and let {x, y} be the pair offered in this period.
Then W and W ′ disagree on {x, y}. Furthermore, the pair {x, y} is clearly
offered in period t of the history generated by σ and any W ′′ ⊇W ∩W ′, so
that x ρ(W ′′) y iff x W ′′ y.

For sufficiency, let ρ be faithful and consistent; we shall construct a
strategy that induces ρ. For each history h, let W h and W ′h be majority wills
such that

(a) if h = ((xt, yt))Tt=1, then xt W h yt and xt W ′h yt for each t ∈ {1, . . . , T},
and

(b) W h and W ′h disagree on any pair that is not voted on in h.

Since ρ is faithful, ρ(W h) is W h-reachable and ρ(W ′h) is W ′h-reachable by
Observation 4. Thus by Observation 1 (appendix B.3), we have ρ(W h) =
ρ(W ′h) iff h is terminal. Since ρ is consistent, we may for each non-terminal
history h choose a pair σ(h) := {x, y} ⊆ X that satisfies

(c) x W h y W
′
h x and

(d) x W ′′ y iff x ρ(W ′′) y for any majority will W ′′ ⊇W h ∩W ′h.

Claim. Let h = ((xt, yt))Tt=1 be a history of length T ≥ 1 such that {x1, y1} =
σ(∅) and {xt, yt} = σ

(
((xs, ys))t−1

s=1

)
for each t ∈ {2, . . . , T}. Then (i) for any

majority will W ′′ with xt W ′′ yt for each t ∈ {1, . . . , T}, we have xt ρ(W ′′) yt
for each t ∈ {1, . . . , T}, and (ii) the pair σ(h) is unranked by the transitive
closure of

⋃T
t=1{(xt, yt)}.

Proof of the claim. For the first part, fix a t ∈ {1, . . . , T} and a majority will
W ′′ such that xs W ′′ ys for each s ∈ {1, . . . , T}. Define h′ := ((xs, ys))t−1

s=1
(meaning h′ = ∅ if t = 1), noting that σ(h′) = {xt, yt}. We have W ′′ ⊇
W h′ ∩W ′h′ since W h′ and W ′h′ satisfy (b), whence xt ρ(W ′′) yt by (d).

For the second part, we have xt ρ(W h) yt and xt ρ(W ′h) yt for every
t ∈ {1, . . . , T} by (a) and the first part of the claim, implying that ρ(W h)
and ρ(W ′h) (being transitive) agree on every pair ranked by the transitive
closure of

⋃T
t=1{(xt, yt)}. Since ρ(W h) and ρ(W ′h) disagree on the pair σ(h)

by (c) and (d), it follows that σ(h) is unranked by the transitive closure. �

By the second part of the claim, σ is a well-defined strategy.41 To show
that it induces ρ, fix a majority will W , and let h = ((xt, yt))Tt=1 be the
terminal history generated by σ and W ; we must demonstrate that ρ(W ) is

41We actually defined σ only on the path. Off the path, any behaviour will do.
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the transitive closure of
⋃T
t=1{(xt, yt)}. Since both are rankings, it suffices

to show that xt ρ(W ) yt for every t ∈ {1, . . . , T}. And this follows from the
claim since xt W yt for every t ∈ {1, . . . , T}. �

G How many W -reachable rankings are W -unimprovable?

This appendix contains two results. In §G.1, we show that for a given majority
will W , every W -reachable ranking is W -unimprovable iff W is transitive. In
§G.2, we show that on average across majority wills W , only a small fraction
of W -reachable rankings are W -unimprovable if there are many alternatives.

G.1 When is agenda-setting valuable?

Given the majority will W , the value of agenda-setting lies in being able to
reach a W -unimprovable ranking rather than some (necessarily W -reachable)
ranking that is not W -unimprovable. This motivates the following definition:
Definition 13. Given her preference � (a ranking), the chair benefits from
agenda-setting under a majority willW iff there exists aW -reachable ranking
that is not W -unimprovable.
Proposition 5. For a majority will W , the following are equivalent:
(1) W is not a ranking (i.e. is not transitive).

(2) For some �, the chair benefits from agenda-setting under W .

(3) For every �, the chair benefits from agenda-setting under W .
In words, agenda-setting is valuable precisely because it allows the chair

to exploit Condorcet cycles: the chair benefits whenever there is a cycle in
W , and otherwise does not benefit.

Proof. (3) immediately implies (2). To see that (2) implies (1), consider the
contra-positive: if W is a ranking, then it is clearly the only W -reachable
ranking, so the chair does not benefit from agenda-setting for any �.

To prove that (1) implies (3), fix any ranking � and any majority will
W that is not a ranking; it suffices to exhibit distinct W -reachable rankings
R and R′ such that R is more aligned with � than R′. To that end let R be
a W -efficient ranking (these are easily seen to exist). Similarly let R′ be a
W -anti-efficient ranking, i.e. one such that x ≺ y and x W y implies x R y.

To show that R is more aligned with � than R′, take x, y ∈ X with x � y.
If x W y, then x R y since R is W -efficient. If instead y W x, then y R′ x
since R′ is W -anti-efficient. Thus x R′ y implies x R y.

It remains only to show that R and R′ are distinct. Since W is not a
ranking, there must be x, y, z ∈ X such that x W y W z W x. Suppose wlog
that x � z. There are three cases. If x � y � z, then x R y R z and z R′ x.
If y � x � z, then y R z and z R′ x R′ y. If x � z � y, then x R y and
y R′ z R′ x. In each case, R 6= R′ by transitivity. �
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G.2 Most W -reachable rankings are not W -unimprovable

The following asserts that when there are enough alternatives, only a small
fraction of a typical W ’s W -reachable rankings are W -unimprovable.

Proposition 6. For each n ∈ N, let Rn (Wn) denote a uniform random
draw from the set of all rankings (majority wills) on Xn := {1, . . . , n}, with
Rn and Wn independent. Then

Pr(Rn is Wn-unimprovable|Rn is Wn-reachable)→ 0 as n→∞.

Proof. Fix any n ≥ 5, and define Kn := b(n− 1)/4c. Further fix a ranking R
and a majority will W on Xn, and label the alternatives Xn = {x1, . . . , xn}
so that x1 R . . . R xn. Given k ∈ {1, . . . ,Kn}, say that R admits a local
W -improvement at (x4k−2, x4k−1, x4k) iff both

– x4k−3 W x4k W x4k−2 and x4k−1 W x4k+1, and

– x4k � x4k−1 and x4k � x4k−2.

If R admits a local W -improvement at (x4k−2, x4k−1, x4k), then it fails to be
W -unimprovable since the ranking

x1 R
′ · · · R′ x4k−3 R

′ x4k R
′ x4k−2 R

′ x4k−1 R
′ x4k+1 R

′ · · · R′ xn

is then W -reachable (by Observation 1 in appendix B.3) and more aligned
with �.

For each n ≥ 5, let (Xn
k )nk=1 be random variables such that

{Xn
1 , . . . , X

n
n} = Xn and Xn

1 Rn . . . Rn Xn
n a.s.

The events ‘Xn
4k � Xn

4k−1 and Xn
4k � Xn

4k−2’ are independent across k ∈
{1, . . . ,Kn} and each have probability 1/4. It follows by Observation 1 that
conditional on Rn being Wn-reachable, the events

‘Rn admits a local Wn-improvement at
(
Xn

4k−2, X
n
4k−1, X

n
4k
)
’

are independent across k ∈ {1, . . . ,Kn} and have probability (1/2)5. Thus

Pr(Rn is Wn-unimprovable|Rn is Wn-reachable) ≤
(
1− (1/2)5

)Kn

,

which vanishes as n→∞ since Kn = b(n− 1)/4c diverges. �
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H A characterisation of our ‘transitive’ protocol

In this appendix, we show that among all possible rules of interaction between
the chair and committee that lead to a ranking, the ‘transitive’ protocol
studied in this paper (described in §3.1) is the only one (up to restriction)
that denies the chair arbitrary power and that allows votes only on pairs.
This protocol is thus the natural one, given the restriction to pairwise votes.
Non-binary votes raise issues that are beyond the scope of this paper.42

A ballot is a set of two or more alternatives. An election is (B, V ), where
B is a ballot and V is a map {1, . . . , I} → B specifying what alternative
each voter votes for. An electoral history is a finite sequence of elections
with distinct ballots. For two (distinct) electoral histories h, h′, we write
h v(@) h′ iff h is a truncation of h′.

A protocol specifies for each (permitted) electoral history either (1) a set
of ballots that the chair is permitted to offer or (2) a ranking. Formally:

Definition 14. A protocol is (H, ρ), where

(1) H is a non-empty set of electoral histories such that

– if h′ belongs to H, then so does any h v h′, and
– if h = ((B1, V1), . . . , (Bt, Vt)) belongs to H, then so does h′ =

((B1, V1), . . . , (Bt, V ′t )) for any V ′t : {1, . . . , n} → Bt.

Call h ∈ H terminal (in H) iff there is no h′ A h in H.

(2) ρ is a map that assigns a ranking to each terminal h ∈ H.

Call an electoral history binary iff each ballot has exactly two elements.
A binary protocol (H, ρ) is one whose H consists of binary electoral his-
tories. For any binary electoral history h = (({xs, ys}, Vs))ts=1, where wlog
|{i : Vs(i) = xs}| > I/2 for each s ∈ {1, . . . , t}, let Rh denote the transitive
closure of

⋃t
s=1{(xs, ys)}.43 The transitive protocol is the binary protocol

that permits the chair to offer a ballot {x, y} after binary electoral history
h exactly if the pair x, y is unranked by Rh, and assigns the ranking Rh to
each terminal h.44

To deny the chair arbitrary power, we focus on protocols that rank x
above y whenever x won an outright majority and y was also on the ballot:

42Unlike in the binary case, there is no ‘most natural’ non-binary protocol. In particular,
reasonable protocols can differ in what they deem the committee to have ‘decided’ in a
vote on three or more alternatives in which none won an outright majority.

43If h is the empty electoral history, then Rh = ∅.
44Explicitly it is (H?, ρ?), where H? consists of all binary electoral histories h′ such that

h @ (({x1, y1}, V1), . . . , ({xt, yt}, Vt)) v h′ implies xt 6Rh yt 6Rh xt,

(so that h ∈ H is terminal iff Rh is a ranking,) and ρ?(h) := Rh for each terminal h ∈ H?.
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Definition 15. A protocol (H, ρ) satisfies committee sovereignty iff for
any terminal h = ((Bt, Vt))Tt=1 ∈ H such that |{i : Vt(i) = x}| > I/2 and
y ∈ Bt \ {x} for some t ∈ {1, . . . , T}, we have x ρ(h) y.

For binary protocols, committee sovereignty is equivalent to imposing
transitivity after every vote:

Observation 5. A binary protocol (H, ρ) satisfies committee sovereignty iff
ρ(h) ⊇ Rh for every terminal h ∈ H.

That is, any pair linked by a chain of majorities (x Rh y) must be ranked
accordingly (x ρ(h) y), and so cannot be offered for a vote.45

Proof. Let (H, ρ) be binary and satisfy committee sovereignty, and take
a terminal h = (({xt, yt}, Vt))Tt=1 ∈ H, where wlog xt Rh yt for each t ∈
{1, . . . , T}. Then ρ(h) ⊇

⋃T
t=1{(xt, yt)} by committee sovereignty, whence

ρ(h) ⊇ Rh because ρ(h) is transitive and Rh is by definition the smallest
transitive relation containing

⋃T
t=1{(xt, yt)}.

For the converse, let (H, ρ) be binary with ρ(h) ⊇ Rh for every terminal
h ∈ H. Take any terminal h = (({xt, yt}, Vt))Tt=1 ∈ H and suppose that
|{i : Vt(i) = xt}| > I/2; we must show that xt ρ(h) yt. Since xt Rh yt, this
follows immediately from ρ(h) ⊇ Rh. �

More is needed to deny the chair excessive power: she must also be
required to offer enough ballots to give the committee a fair say. To formalise
this, write x Sh y for an electoral history h = ((Bt, Vt))Tt=1 iff

x, y ∈ Bt and |{i : Vt(i) = x}| ≥ |{i : Vt(i) = y}|

for some t ∈ {1, . . . , T}, and say that h gives the committee a say on x, y iff
{z1, zL} = {x, y} for some sequence z1 S

h z2 S
h · · · Sh zL of alternatives.

Definition 16. A protocol (H, ρ) satisfies democratic legitimacy iff every
terminal h ∈ H gives the committee a say on each pair of alternatives.

Write τ(H) for the terminal elements of H. A protocol (H, ρ) is a restric-
tion of (H′, ρ′) iff τ(H) ⊆ τ(H′) and ρ = ρ′|τ(H).46 To wit, anything the chair
can do under (H, ρ), she can also do under (H′, ρ′).

Proposition 7. A protocol is binary and satisfies committee sovereignty
and democratic legitimacy iff it is a restriction of the transitive protocol.

45Formally: if x Rh y, then no terminal h′ w h can feature the ballot {x, y} (except
in h). For otherwise there would be a terminal h′ in which y beats x in a vote, so that
x Rh′

y Rh′
x, which is impossible since ρ(h′) ⊇ Rh′

and ρ(h′) is a ranking.
46τ(H) ⊆ τ(H′) holds exactly if H ⊆ H′ and any h ∈ τ(H) is terminal in H′.
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Thus any binary protocol that does not give the chair arbitrary power
must be the transitive protocol, possibly with limitations on what unranked
pairs the chair may offer at some histories. Neglecting such limitations as ad
hoc, we arrive at the transitive protocol.

Proof. Any restriction of the transitive protocol (H?, ρ?) satisfies the three
properties since (H?, ρ?) does and the properties are preserved under restric-
tion. For the converse, let (H, ρ) satisfy the three properties; we must show
that τ(H) ⊆ τ(H?) and ρ = ρ?|τ(H).

To establish τ(H) ⊆ τ(H?), we show separately that H ⊆ H? and that
any h ∈ τ(H) ⊆ H? is terminal in H?. For the former, fix a pair of electoral
histories h @ h′ = (({xs, ys}, Vs))ts=1 ∈ H. We must show that the pair xt, yt
is unranked by Rh, so suppose toward a contradiction that xt Rh yt. Then we
must have xt ρ(h′′) yt for any terminal h′′ ∈ H such that h′′ w h since ρ(h′′) ⊇
Rh

′′ ⊇ Rh by Observation 5. In particular, this must hold for any terminal
h′′ ∈ H with first t−1 elections ({x1, y1}, V1), . . . , ({xt−1, yt−1}, Vt−1) and tth
election ({xt, yt}, V ′t ), where V ′t satisfies |{i : V ′t (i) = yt}| > I/2. But for such
an h′′, committee sovereignty of (H, ρ) clearly demands that yt ρ(h′′) xt—a
contradiction.

For the latter, let h ∈ τ(H) ⊆ H?; we must show that h is terminal in H?,
meaning precisely that Rh is total. Since h is binary, a pair x, y is ranked by
Rh iff h gives the committee a say on x, y. And h gives the committee a say
on every pair since (H, ρ) satisfies democratic legitimacy.

To show that ρ = ρ?|τ(H), fix an h ∈ τ(H). Then ρ(h) ⊇ Rh = ρ?(h) by
Observation 5 and the definition of ρ?, and the containment must be an
equality since ρ(h) and ρ?(h) are both rankings. �

I The limits of strategic voting

In this appendix, we show that sincere voting is the unique regret-free strategy
of each voter. In fact, we show something stronger: deviating from sincere
voting results in a no better (a worse) outcome against any (some) strategies
of the chair and the other voters, in the ‘more aligned’ sense.

Let each voter i ∈ {1, . . . , I} have a strict preference �i over the altern-
atives X . A strategy σi of a voter specifies, after each history and for every
offered pair x, y, whether x or y should be voted for. (Since a history records
only which pairs were offered and which alternative won in each pair, not who
voted how, this definition of a strategy rules out complex path-dependence.
We shall relax that stricture below.)

A voter’s sincere strategy is the one that always instructs her to vote
for whichever alternative she likes better. For a strategy σ of the chair and
strategies σ1, . . . , σI of the voters, write R(σ, σ1, . . . , σI) for the outcome (the
ranking that results).

11



Definition 17. Let σi, σ′i be strategies of voter i, and σ, σ−i strategies of the
chair and the other voters. σ′i is obviously better than σi against σ, σ−i iff
R(σ, σ′i, σ−i) is distinct from, and more aligned with �i than, R(σ, σi, σ−i).

When one strategy is obviously better than another, it yields a better
outcome no matter what voter i’s exact preference over rankings, given only
the weak assumption that voter i weakly prefers rankings more aligned with
her preference �i over alternatives. By contrast, comparing strategies that
are not related by ‘obviously better than’ involves trade-offs.

Definition 18. A strategy σi of a voter is dominant iff for any alternative
strategy σ′i,

(@) there exist no strategies σ, σ−i of the chair and other voters against
which σ′i is obviously better than σi, and

(∃) there exist strategies σ, σ−i of the chair and other voters against which
σi is obviously better than σ′i.

Dominance is strong. (Albeit not as strong as conventional dominance,
since ‘obviously better’ is only a partial ordering.) Observe that there can
be at most one dominant strategy. In fact, there is exactly one:

Proposition 8. For each voter, the sincere strategy is (uniquely) dominant.

Proposition 8 remains true, with the same proof, if the definition of
dominance is strengthened to allow the alternative strategy σ′i to be an
‘extended strategy’ that can condition on who voted how in previous periods.

Proof. Fix a voter i, and let σ?i be her sincere strategy. We must establish
properties (@) and (∃) in the definition of dominance.

Property (@): Fix strategies σ, σ−i of the chair and other voters and a
non-sincere strategy σ′i of voter i, and suppose that R′ := R(σ, σ′i, σ−i) is
distinct from R := R(σ, σ?i , σ−i); we must show that R′ is not more aligned
with �i than R. Let T be the first period in which the proto-rankings RT
and R′T differ, and let {x, y} be the pair voted on in this period, where
(wlog) x RT y and y R′T x. The two strategy profiles generate the same
length-(T − 1) history h (by definition of T ), and thus the same period-T
votes σj(h) by the other voters j 6= i. So voter i is pivotal after history h,
and since σ?i is sincere it must be that x �i y. Thus R′ ⊇ R′T is not more
aligned with �i than R ⊇ RT .

Property (∃): Take any non-sincere strategy σ′i. Choose strategies σ′, σ′−i
such that σ′i votes non-sincerely along the terminal history induced by the
strategy profile (σ′, σ′i, σ′−i), and let T be the first period in which this occurs.
Then the proto-ranking in period T − 1 is the same under the strategy
profiles (σ′, σ′i, σ′−i) and (σ′, σ?i , σ′−i); call it RT−1. Write {x, y} for the pair
of alternatives that are voted on in period T , where (wlog) x �i y.
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Extension claim. Let R′′ be a proto-ranking, and let x, y ∈ X be distinct
alternatives such that x 6R′′ y 6R′′ x. Then there is a ranking R′ ⊇ R′′ such
that x, y are R′-adjacent with x R′ y.

Proof of the extension claim. Let R′′ and x, y ∈ X satisfy the hypothesis.
Then R′′ ∪ {x, y}2 admits a complete and transitive extension Q by the
extension lemma in appendix C.2. Note that x Q y Q x. It follows that
by appropriately breaking indifferences in Q, we may obtain a ranking
R′ ⊇ R′′ ∪ {(x, y)} such that x, y are R′-adjacent with x R′ y. �

By the extension claim, there exists a ranking R ⊇ RT−1 with x R y and
x, y R-adjacent. Let R′ be exactly R, except with the positions of x and y
reversed. Clearly R is more aligned with �i than R′, and the two are distinct.

It thus suffices to find strategies σ and σ−i such that R(σ, σ?i , σ−i) = R
and R(σ, σ′i, σ−i) = R′. For the chair, let σ := σ′. As for σ−i, let half of the
other voters j ∈ I \ {i} vote according R (i.e. vote for z over w iff z R w),
and the rest vote according to R′. �

J Extension: indecisive votes

In this appendix, we allow the vote on a pair of alternatives to be indecisive,
in which case the chair may choose how they are ranked. (This occurs e.g.
when the chair is a voting member of the committee.) To that end, we
re-interpret x W y to mean that the chair is permitted to rank x above y,
and allow for the possibility that both x W y and y W x. A vote on {x, y}
with x W y is indecisive if also y W x, and decisive otherwise.

The ‘majority will’ W must still be total and irreflexive, but not ne-
cessarily asymmetric. By appeal to an argument similar to that for Fact 1
(appendix B.1), any total and irreflexive relation W should be considered.

A history still records what pairs were offered and how each pair was
ranked, and a strategy now specifies not only what pair to offer after each
history, but also how to rank them if the vote is indecisive. Note that a history
does not record whether a vote was decisive or not, and thus that we rule
out strategies that condition on this information. We show in supplementary
appendix K how this restriction may be dropped.

Regret-free and efficient strategies are defined as before, with ‘for any
majority will W ’ replaced by ‘for any total and irreflexive W ’. By Lemma 1,
efficiency still implies regret-freeness.

When the chair offers {x, y} with x � y and the vote is indecisive, we say
that she ranks in her interest iff she ranks x above y, and against her interest
otherwise. Augment the definition of insertion sort in §5 so that the chair
ranks in her interest whenever a vote is indecisive. Theorem 1 (§5) remains
true, with the same proof: insertion sort is efficient, and thus regret-free.

The characterisations of regret-free strategies (Theorems 2 and 3 in §6)
extend as follows:
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Theorem (2+3)′. For a strategy σ, the following are equivalent:

(a) σ is regret-free.

(b) σ is efficient.

(c) σ never misses an opportunity, takes a risk, or ranks against the chair’s
interest.

Proof. We establish the implications depicted in Figure 3. The proof that
(c) implies (b) given in appendix C.1 applies essentially unchanged. That (b)
implies (a) follows from Lemma 1.

It remains to show that (a) implies (c). To establish that regret-free
strategies never miss an opportunity or take a risk, it suffices to replicate
the argument in appendix C.2. To show that a regret-free strategy must not
rank against the chair’s interest, we prove the contra-positive. Let σ be a
strategy that ranks against the chair’s interest under some majority will W ;
we shall find a majority will W ′ such that the outcome R of σ under W ′
fails to be W ′-unimprovable. In particular, we shall exhibit a W ′-reachable
ranking R′ 6= R that is more aligned with � than R.

Let T be the first period in which σ ranks against the chair’s interest
under W . Write RT−1 for the associated end-of-period-(T − 1) proto-ranking,
and let {x, y} be the pair offered in period T . By hypothesis, x W y W x,
and the chair chooses to rank y above x.

By the extension claim in supplementary appendix I (p. 13), there exists
a ranking R′ ⊇ RT−1 ∪ {(x, y)} such that x, y are R′-adjacent. Define a
majority will W ′ by W ′ := R′ ∪ {(y, x)}, and denote by R the outcome of σ
under W ′. Clearly R′ is W ′-reachable. It remains to show that R 6= R′ and
that R′ is more aligned with � than R.

For the former, since x R′ y, it suffices to show that y R x. To this
end, observe that that RT−1 ⊆ R′ ⊆ W ′. Thus the history of length T − 1
generated by σ and W ′ is the same as that generated by σ and W , which
means in particular that {x, y} is offered in period T , and that y is ranked
above x if the vote is indecisive. Under W ′, the vote is indeed indecisive
(x W ′ y W ′ x), and thus y R x as desired.

To show that R′ is more aligned with � than R, observe that W ′ agrees
with R′ on every pair {z, w} * {x, y} = [x, y]R′ . Thus by Lemma 3 in
appendix C.2, R and R′ agree on every pair {z, w} 6= {x, y}. Since x � y
and x R′ y, it follows that R′ is more aligned with � than R. �

All of the remaining results also extend: the characterisations of regret-
freeness are tight (Propositions 1 and 2 in §6), the outcome-equivalents of
insertion sort are (include) the lexicographic (amendment) strategies (The-
orem 4 and Proposition 3 in §6), and sincere voting is dominant (Proposition 8
in supplementary appendix I).
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K Extension: strategies with extended history-dependence

By definition, a strategy does not condition on who voted how in the past. To
relax this restriction, let an extended history be a sequence of pairs offered
and votes cast by each member on each pair, and let an extended strategy
assign to each extended history an unranked pair of alternatives.

Recall from appendix B.1 the definition of voting profiles. The outcome
of an extended strategy σ under a voting profile (Vi)Ii=1 is the final ranking
that results. A strategy is regret-free (efficient) iff its outcome under every
voting profile (Vi)Ii=1 is W -unimprovable (W -efficient), where W denotes the
majority will of (Vi)Ii=1.

Insertion sort is clearly an extended strategy, so is efficient by Theorem 1
(§5). Our characterisation of regret-freeness (Theorems 2 and 3 in §6) remains
valid:

Theorem (2+3)′′. For an extended strategy σ, the following are equivalent:

(a) σ is regret-free.

(b) σ is efficient.

(c) σ never misses an opportunity or takes a risk.

Proof. We prove the implications depicted in Figure 3. That (c) implies (b)
follows from the argument in appendix C.1, which applies unchanged to
extended strategies. That (b) implies (a) follows from Lemma 1.

To show that (a) implies (c), we prove the contra-positive by augmenting
the argument in appendix C.2. Take an extended strategy σ that misses
an opportunity or takes a risk under some voting profile (Vi)Ii=1, and let
t be the first period in which this occurs. Let W be the majority will of
(Vi)Ii=1. Construct an alternative majority will W ′ exactly as in the proof in
appendix C.2. Construct in addition a voting profile (V ′i )Ii=1 whose majority
will is W ′, and such that the extended history up to time t under σ and
(V ′i )Ii=1 is the same as under σ and (Vi)Ii=1. The argument in appendix C.2
ensures that the outcome of σ under (V ′i )Ii=1 fails to be W ′-unimprovable.
Thus σ fails to be regret-free. �
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