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The Chainstore Paradox

• A monopolist has branches in T ∈ N locations, with T finite.

He faces one potential competitor in each location.

• In period s ∈ {1, 2, ...,T}, the monopolist plays against the competitor
in the s-th location.
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• Monopolist’s total payoff is the sum of payoffs in T locations.

• Every competitor perfectly observes all actions chosen before.
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The Chainstore Paradox

There is a unique subgame perfect equilibrium:

• Every competitor chooses In and monopolist chooses Accommodate.

What is wrong with this prediction?

• No matter how long the time horizon is, the monopolist never fights.

• Even if a competitor observes the monopolist fighting the past 1000
entrants, he still believes that he will be accommodated with prob 1.

Something is missing in complete information game repeated games.
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Intellectual History: Commitment Type Models

How to fix this? Gang of four.

• Kreps and Wilson (1982), Milgrom and Roberts (1982).

Idea: Perturb the game with a small prob of commitment type.

• With probability ε > 0, the monopolist is irrational,

doesn’t care about payoffs, and mechanically fights in every period.

• With probability 1 − ε, the monopolist is rational,

maximizes the sum of his payoffs across periods.
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Result: Gang of Four

Theorem: Gang of Four

For every ε > 0, there exists T∗ ∈ N such that if T ≥ T∗,

then on the equilibrium path of every sequential equilibrium,

• The rational monopolist chooses F & each potential entrant chooses

Out in all except for the last T∗ periods

Proof: Backward induction.

Takeaway: The option to build reputations can dramatically affect patient
players’ incentives and behaviors.
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Robustness of the Gang of Four Insight?

The gang of four result relies on:

• Finite horizon and backward induction.

• Particular stage-game payoff functions.

• Entrants can perfectly observe the monopolist’s action.

Another concern: Does it rely on the specification of incomplete info?

• Part 2 of Fudenberg and Maskin (1986).
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Part 2 of Fudenberg and Maskin (1986)

• Let G = (N,A, u) be an n-player normal form game.

• Let α∗ ∈ ×n
i=1∆(Ai) be a stage-game NE with payoff w ∈ Rn.

Folk Theorem under Incomplete Information: Fudenberg and Maskin (1986)

For any ε > 0 and any feasible payoff v > w, there exists T∗ ∈ N such that

for any T > T∗, there exists a strategy profile {si}i∈N such that in the T-fold

repetition of G with public randomization where each player i is rational

with probability 1 − ε and is committed to si with probability ε,

there is an equilibrium where players’ average payoff is within ε of v.
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Fudenberg and Levine (1989, 1992)

Extend the gang of four insights to

• environments with an infinite horizon.

• general stage game payoffs.

• imperfect monitoring.

• weaker solution concepts (Nash equilibrium).

• not sensitive to the details of incomplete info.

I will present all results in games with an infinite horizon.

• These results also apply to games with long but finite horizon.
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Infinitely Repeated Game with One Long-Run Player

• Time: t = 0, 1, 2, ...

• Long-lived player 1 (P1) vs a sequence of short-lived player 2s (P2).

• Players simultaneously choose their actions a1 ∈ A1 and a2 ∈ A2.

Actions in period t: a1,t ∈ A1 and a2,t ∈ A2.

• Stage-game payoffs: u1(a1,t, a2,t), u2(a1,t, a2,t).

P1’s discounted average payoff :
∑∞

t=0(1 − δ)δtu1(a1,t, a2,t).

• Public signal in period t: yt ∈ Y ,

which is distributed according to ρ(·|a1,t, a2,t) ∈ ∆(Y).
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Introducing Commitment Types

P1 has persistent private info about his type ω ∈ Ω ≡ {ωr}
⋃

Ωm.

1. ωr stands for a rational type, who can choose any action in order to
maximize his discounted average payoff.

2. Each α∗
1 ∈ Ωm ⊂ ∆(A1) stands for a commitment type,

who does not care about payoffs and plays α∗
1 in every period.

P2’s prior belief: π ∈ ∆(Ω).

What can players observe?

• Player 1’s history: ht
1 ∈ Ht

1 ≡ Ω× {A1 × Y}t.

• Player 2’s history: ht
2 ∈ Ht

2 ≡ Y t.

Assumptions: A1,A2,Y and Ωm are finite, π has full support.
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Commitment Payoff Theorem

For any commitment action α∗
1 ∈ Ωm, P1’s commitment payoff from α∗

1 is

v∗1(α
∗
1) ≡ min

a2∈BR2(α∗
1 )

u1(α
∗
1 , a2).

Let u1 be P1’s lowest stage-game payoff.

Commitment Payoff Theorem

Suppose the monitoring technology ρ(·|a1,t, a2,t) satisfies some condition.

For every ε > 0, there exists δ∗ ∈ (0, 1) such that when δ > δ∗ and π

assigns prob more than ε to commitment type α∗
1 ∈ Ωm,

the rational type of P1’s payoff in any equilibrium is at least v∗1(α
∗
1)− ε.
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Commitment Payoff Theorem: Perfect Monitoring

One case in which the result applies: Perfect monitoring.

Suppose there exists a pure commitment action a∗1 ∈ Ωm and the monitoring
technology satisfies Y = A1 × A2 and ρ(a1, a2|a1, a2) = 1.

Commitment Payoff Theorem

For every ε > 0, there exists T ∈ N,

such that when π assigns prob more than ε to commitment type a∗1 ∈ Ωm,

the rational-type P1’s payoff in any equilibrium is at least:

(1 − δT)u1 + δTv∗1(a
∗
1).

This payoff lower bound does not depend on the details of the type space.

• It only requires commitment type a∗1 to occur with positive prob.
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Proof: Overview

Fix the parameters (π, δ) and an equilibrium (σ1, σ2).

• Consider the rational type of P1’s payoff

if he deviates from σ1 and mechanically plays a∗1 in every period.

• Let this payoff be U∗
1 .

• By definition, the rational type of P1’s equilibrium payoff ≥ U∗
1 .
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Proof: P1’s payoff if he deviates and plays a∗
1

In every period,

• either P2’s action is supported in BR2(a∗
1).

or P2 has an incentive to play actions outside BR2(a∗1).

In the 1st case, P1’s stage-game payoff ≥ v∗1(a
∗
1).

In the 2nd case, there exists γ > 0 such that:

• P2 believes that a∗1 is played with prob less than 1 − γ in that period.

Such γ depends only on players’ stage-game payoff functions.

• After P2 observes P1 plays a∗
1 in that period, Bayes Rule suggests that:

Posterior Prob of Type a∗1 =
(Prior Prob of Type a∗1 ) · Pr(a∗

1 |type a∗
1)

unconditional prob of a∗1

≥ Prior Prob of Type a∗1
1 − γ

.

• This can happen in at most T ≡ ⌈log ε/ log(1 − γ)⌉ periods.
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Proof: Wrap up

What is rational P1’s payoff if he deviates and plays a∗
1 in every period?

In periods where P2’s action is supported in BR2(a∗1).

• P1’s stage game payoff ≥ v∗1(a
∗
1).

In periods where P2’s action is not supported in BR2(a∗1).

• P1 may receive low stage-game payoff,

• But there can be at most T ≡ ⌈log ε/ log(1 − γ)⌉ such periods.

Lower bound on rational P1’s payoff from playing a∗
1 in every period:

(1 − δT)u1 + δTv∗1(a
∗
1).

This is also a lower bound for the rational-type P1’s equilibrium payoff.
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Some Common Misunderstandings

1. Can rational P1 convince P2s that he is a commitment type?

Not with high prob on the equilibrium path! Belief is a martingale.

Example: Think about a pooling equilibrium.

2. Will the rational-type P1 build a reputation?

Not necessarily in the infinite horizon game. He may find it strictly
optimal to separate from the commitment type in period 0.

3. Does it say much about the short-run players’ welfare?

No. Because rational-type P1’s behavior cannot be pinned down.
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Predictions on P1’s Behavior?

Suppose there is a commitment type that plays P1’s optimal pure
commitment action a∗

1 in every period, then

• What’s the frequency with which the rational-type P1 plays a∗
1 ?

X(σ1,σ2)(a∗1) ≡ E(σ1,σ2)
[ ∞∑

t=0

(1 − δ)δt1{a1,t = a∗1}
]

Li and Pei (2021): In many games of interest, any action frequency that is
compatible with

• P1 receiving payoff at least v1(a∗1),

• P2’s myopic incentives

can arise in some equilibria of the reputation game.
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Li and Pei (2021)’s Theorem

Assumptions on stage-game payoffs:

• P1 has a unique optimal commitment action a∗
1 and BR2(a∗

1) = {a∗2}.

• a∗1 /∈ BR1(a∗2).

• u1(a∗
1 , a∗2) > vmin ≡ minα2∈A2 maxa1∈A1 u1(a1, α2).

Let

F∗(u1, u2) ≡ min
(α′

1,α
′′
1 ,a′2,a

′′
2 ,q)∈∆(A1)×∆(A1)×A2×A2×[0,1]

{
qα′

1(a
∗
1)+(1−q)α′′

1 (a
∗
1)
}
,

subject to a′
2 ∈ BR2(α

′
1), a′′

2 ∈ BR2(α
′′
1 ), and

qu1(α
′
1, a′

2) + (1 − q)u1(α
′′
1 , a′′2 ) ≥ u1(a∗1 , a∗2).

Theorem: When δ is close enough to 1, rational-type P1’s discounted
frequency of playing a∗1 can be anything between F∗(u1, u2) and 1.
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From Perfect Monitoring to Imperfect Monitoring

Imperfect monitoring:

• The public signal is noisy.

• The commitment action is mixed.

• Extensive-form stage game and only the terminal node is observed.

• The long-run player privately observes an i.i.d. state.

Questions:

• Do we still have the commitment payoff theorem?

• How does the monitoring structure affect the patient player’s payoff?
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What can go wrong under imperfect monitoring?

A simple example:

• Players’ stage-game payoffs:

– T N
H 2, 1 −2, 0
L 3,−1 0, 0

• One commitment type, playing H in every period.

• Suppose ρ(·|H) = ρ(·|L).

What is player 1’s equilibrium payoff when commitment prob is small?

Lesson: P1’s payoff depends on the monitoring technology.
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A More Permissive Notion of Best Reply

Let || · || denote the total variation distance.

• If f , g ∈ ∆(X), then ||f − g|| ≡ 1
2

∑
x∈X |f (x)− g(x)|.

Definition: ε-confirming best reply

α2 ∈ ∆(A2) is an ε-confirming best reply to α1 ∈ ∆(A1) if there exists
α′

1 ∈ ∆(A1) such that

1. α2 best replies to α′
1,

2.
∥∥∥ρ(·|α1, α2)− ρ(·|α′

1, α2)
∥∥∥ ≤ ε.

Idea: α2 best replies to something that is hard to distinguish from α1.
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Properties of ε-Confirming Best Reply

Let Bε(α1) ⊂ ∆(A2) denote the set of ε-confirming best replies to α1.

Properties of ε-Confirming Best Reply:

1. If ε′ < ε, then Bε′(α1) ⊂ Bε(α1).

2. limε↓0 Bε(α1) = B0(α1). (convince yourself)

3. BR2(α1) ⊂ B0(α1).

When is B0(α1) ⊂ BR2(α1)?

Definition: Statistical Identification

P1’s actions are statistically identified if for every α2 ∈ ∆(A2),

{ρ(·|a1, α2)}a1∈A1 are linearly independent vectors.

4. If P1’s actions are statistically identified, then BR2(α1) = B0(α1).
• Why? ρ(·|α1, α2) ̸= ρ(·|α′

1, α2) if α1 ̸= α′
1.
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Statement of the Payoff Lower Bound Result

Fudenberg and Levine (1992): Payoff Lower Bound

For every ε > 0, there exists δ ∈ (0, 1)

s.t. when δ > δ and π assigns prob more than ε to commitment type α∗
1 ,

the rational type of P1’s payoff in any equilibrium is at least:

max
α∗

1 ∈Ωm
min

α2∈Bε(α∗
1 )

u1(α
∗
1 , α2)− ε.

1. Fix π ∈ ∆(Ω) and let δ → 1, P1’s payoff lower bound is:

lim
ε↓0

min
α2∈Bε(α∗

1 )
u1(α

∗
1 , α2) = min

α2∈B0(α∗
1 )

u1(α
∗
1 , α2).

2. When P1’s actions are statistically identified,

min
α2∈B0(α∗

1 )
u1(α

∗
1 , α2) = min

α2∈BR2(α∗
1 )

u1(α
∗
1 , α2).



Intellectual History Fudenberg and Levine Perfect Monitoring Imperfect Monitoring Proof

Statement of the Payoff Upper Bound Result

Fudenberg and Levine (1992): Payoff Upper Bound

For every ε > 0, there exists δ ∈ (0, 1)

s.t. when δ > δ and π assigns prob more than ε to the rational type,

the rational type of P1’s payoff in any equilibrium is at most:

sup
α1∈∆(A1)

max
α2∈Bε(α1)

u1(α1, α2) + ε.
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Payoff Lower Bound & Payoff Upper Bound

Payoff lower bound as δ → 1:

max
α∗

1 ∈Ωm

{
min

α2∈B0(α∗
1 )

u1(α
∗
1 , α2)

}
.

Payoff upper bound as δ → 1:

sup
α1∈∆(A1)

{
max

α2∈B0(α1)
u1(α1, α2)

}
.

If actions are identified and Ωm contains the optimal commitment action,

• Both bounds converge to P1’s (mixed) Stackelberg payoff.

Reputation leads to a sharp prediction on the patient player’s payoff.
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Proof: Overview

Let us examine the rational type’s payoff once he deviates to type ω’s
equilibrium strategy.

• Type ω could be a commitment type and could be a rational type.
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P2’s Best Reply Problem at Any Given History

Fix an equilibrium σ and consider P2’s best reply problem at ht
2:

• P2 best replies to her belief about P1’s period t action α1(ht
2).

• α1(ht
2) and P2’s action at ht

2 induce a distribution of yt: pht
2
∈ ∆(Y).

This is P2’s belief about yt in period t.

• Let pω|ht
2
∈ ∆(Y) be the distribution of yt conditional on type ω.

• If ||pω|ht
2
− pht

2
|| ≤ ε, then P2 plays an ε-confirming best reply to type

ω’s equilibrium action at ht
2.

Question: Suppose the rational type of P1 deviates and uses type ω’s
equilibrium strategy, then in how many periods can we have

||pω|ht
2
− pht

2
|| > ε



Intellectual History Fudenberg and Levine Perfect Monitoring Imperfect Monitoring Proof

Detour: Relative Entropy

Let X be a countable set, and let p, q ∈ ∆(X).

Relative entropy/KL-divergence of q with respect to p:

d(p||q) ≡
∑
x∈X

p(x) log
p(x)
q(x)

.

Intuitively, d(p||q) measures an observer’s expected error in predicting x ∈ X
when he thinks that the distribution of x is q while the true distribution is p.

Proof for d(p||q) ≥ 0: Uses the fact that log a ≤ a − 1 for every a > 0.
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Why should we care about entropy?

Fix the equilibrium being played.

• Let P ∈ ∆(Y∞) be the distribution over player 2’s observations.

Suppose player 1 deviates and plays the equilibrium strategy of type ω.

• Let Pω ∈ ∆(Y∞) be the distribution over player 2s’ observations.

Since P =
∑

ω∈Ω π(ω)Pω , we have

d
(

Pω

∥∥∥P
)
≤ − log π(ω)︸ ︷︷ ︸

a bounded number

.

However, we need to bound ||pω|ht
2
− pht

2
||, not d

(
Pω

∥∥P
)
.

1. We need to relate d
(
Pω

∥∥P
)

to d
(
pω|ht

2

∥∥pht
2

)
.

2. We need to convert relative entropy to total variation distance.
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Chain Rule: Relate d
(
Pω

∥∥P
)

to d
(
pω|ht

2

∥∥pht
2

)
Let X and Y be two sets and let p, q ∈ ∆(X × Y).

Let pX, qX, pY , qY be the marginal distributions on X and Y .

Chain rule:

d(p||q) = d(pX||qX) + EpX

[
d
(

pY(·|x)
∥∥∥qY(·|x)

)]
.

How to apply this:

• h∞2 consists of the signal player 2 observes in each period.

Iteratively applying the chain rule, we can obtain that

− log π(ω) ≥ d
(

Pω

∥∥∥P
)
=

∞∑
t=0

EPω

[
d
(

pω|ht
2

∥∥∥pht
2

)
︸ ︷︷ ︸

1-step-ahead prediction error

]
.
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Pinsker’s Inequality: Relate Entropy to TV Distance

Pinsker’s Inequality:
∥p − q∥ ≤

√
2d(p||q).

Implication: If d(p||q) ≤ ε2/2, then ||p − q|| ≤ ε.
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Putting Things Together

By Pinsker’s Inequality, if

d
(

pω|ht
2

∥∥∥pht
2

)
≤ ε2

2
,

then ∥∥∥pω|ht
2
− pht

2

∥∥∥ ≤ ε,

and player 2 will play an ε-confirming best reply to type ω’s action at ht
2.

Since
∞∑

t=0

EPω

[
d
(

pω|ht
2

∥∥∥pht
2

)]
≤ − log π(ω),

the expected number of periods in which d
(

pω|ht
2

∥∥∥pht
2

)
≥ ε2

2 is no more
than:

T(ε, ω) ≡
⌈
− 2 log π(ω)

ε2

⌉
.
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Proof: Payoff Lower Bound

Let ω be commitment type α∗
1 .

If the rational type deviates and imitates commitment type α∗
1 , then

1. In periods where d
(
pα∗

1 |h
t
2

∥∥pht
2

)
≤ ε2

2 , P1’s stage-game payoff
≥ minα2∈Bε(α∗

1 )
u1(α

∗
1 , α2).

2. In expectation, there can be at most T(ε, α∗
1) periods in which

d
(
pα∗

1 |h
t
2

∥∥pht
2

)
≥ ε2

2 .

In expectation, the rational type’s payoff by playing α∗
1 in every period is at

least:
(1 − δT(ε,α∗

1 ))u1 + δT(ε,α∗
1 ) min

α2∈Bε(α∗
1 )

u1(α
∗
1 , α2).

This lower bound converges to minα2∈Bε(α∗
1 )

u1(α
∗
1 , α2) as δ → 1.
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Proof: Payoff Upper Bound

Let ω be the rational type.

If the rational type plays his equilibrium strategy, then

1. In periods where d
(
pω|ht

2

∥∥pht
2

)
≤ ε2

2 , P1’s stage-game payoff is no
more than supα1∈∆(A1) maxα2∈Bε(α1) u1(α1, α2).

2. In expectation, there can be at most T(ε, ω) periods in which
d
(
pω|ht

2

∥∥pht
2

)
≥ ε2

2 .

In expectation, the rational type’s payoff by playing his equilibrium strategy
is at most

(1 − δT(ε,ω))u1 + δT(ε,ω) sup
α1∈∆(A1)

max
α2∈Bε(α1)

u1(α1, α2),

which converges to supα1∈∆(A1) maxα2∈Bε(α1) u1(α1, α2) as δ → 1.
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