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Motivation

* An explosion of interest in Bayesian persuasion following
Kamenica and Gentzkow (2011)

¢ Concavification not always tractable

e A number of papers propose duality as a tool to solve
information design problems:

Kolotilin (2018);

Dworczak and Martini (2019);

Dizdar and Kovac (2020);

Kolotilin, Corrao, and Wolitzky (2025);
(Galperti, Levkun, and Perego (2023));
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Introduction

* We propose a unified duality approach to persuasion.

® The optimal dual variable, interpreted as a price function, is a
supergradient of the concave closure of the objective
function at the prior belief.

® Qur results unify and generalize existing duality results in
persuasion.

e This minicourse introduces methodology and illustrates it in
applications.



Recap of Kamenica and Gentzkow (2011)

Sender chooses a signal/experiment to reveal information about a
state to Receiver, who then takes an action.



Recap of Kamenica and Gentzkow (2011)

Sender chooses a signal/experiment to reveal information about a
state to Receiver, who then takes an action.

® There is a state w € Q (compact or finite) with distribution .



Recap of Kamenica and Gentzkow (2011)

Sender chooses a signal/experiment to reveal information about a
state to Receiver, who then takes an action.

® There is a state w € Q (compact or finite) with distribution .

® Sender designs a signal:

® Signal realization space S;

® Conditional probability 7(s|w) for each s € Sand w € Q;



Recap of Kamenica and Gentzkow (2011)

Sender chooses a signal/experiment to reveal information about a
state to Receiver, who then takes an action.

® There is a state w € Q (compact or finite) with distribution .

® Sender designs a signal:

® Signal realization space S;

® Conditional probability 7(s|w) for each s € Sand w € Q;

* Receiver chooses action a € A (compact).



Recap of Kamenica and Gentzkow (2011)

Sender chooses a signal/experiment to reveal information about a
state to Receiver, who then takes an action.

® There is a state w € Q (compact or finite) with distribution .

® Sender designs a signal:

® Signal realization space S;

® Conditional probability 7(s|w) for each s € Sand w € Q;

* Receiver chooses action a € A (compact).

® Receiver’s utility is u(a, w) and Sender’s utility is v(a, w);
both are continuous
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Belief-based approach

® After observing s, Receiver uses Bayes’ rule to update his belief
from the prior oy € A(R) to the posterior u € A(Q).

® Given posterior u, Receiver takes a best-response action
a'(u) € argmaxEy[u(a w)],
acA
breaking possible ties in favor of Sender.

e Sender’s indirect utility from posterior w is

V() = Eufv(a(u), w)l-

¢ A signal 7 induces a distribution 7 over posteriors u, so Sender’s
expected utility is E-[V/(u)].
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Splitting lemma

Lemma. There exists a signal 7 that induces a distribution of
posteriors T € A(A(Q)) iff E-[u] = ko-

Proof: The only if part follows from the law of iterated expectations.
The if part is shown by construction. Indeed, in the finite case, define,
forallw € Q and all i in supp(7),

w(w)T(u)
k) == )



Concavification

Sender’s problem is to find a distribution of posteriors 7 to
maximize E,-[V(u)]

subject to E-[u] = uo.

Smallest concave function that is everywhere greater than V' is called
concave closure of V and is denoted by V.

Concavification. The value of Sender’s problem is V(uo).



Recap of linear programming

Fix an m x n matrix A, an n-vector b, and an m-vector c.

If the primal problem is to find an m-vector x > 0 to

maximize xc
subject to XA = b,

then the dual problem is to find an n-vector y to

minimize by
subject to Ay > c.
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Recap of linear-programming duality

Primal: find x > 0 to Dual: find y to
maximize xc minimize by
subject to XA = b, subjectto Ay > c.

Weak duality. If x and y are feasible solutions, then

xc < xAy = by.

Optimality criterion. If feasible solutions x and y satisfy xc = by,
then they are optimal, as, for any feasible solutions x and y,

xc<by=xc and by > xc=by.

Strong duality. If the primal and dual admit feasible solutions, then
both have optimal solutions x and y, and they satisfy xc = by.
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Find a distribution of posteriors 7 € A(A(Q2)) to
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Primal Problem in Dworczak and Kolotilin (2024)

Find a distribution of posteriors 7 € A(A(Q2)) to
maximize / V(w)dT(w)
AQ)

subject to / udT(w) = o
A(Q)

where
® (Q, p) is a compact metric space
® Lo € A(Q) is a prior belief
e V:A(Q) — Ris bounded and u.s.c. in the weak* topology
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Technical Background

Let M(Q2) be the set of finite signed Borel measures on Q

Let ||-|| kg denote the Kantorovich-Rubinstein norm on M(Q)

Fact 1. ||-|| x5 metrizes the weak* topology on A(Q)

Fact 2. (A(Q), ||-|xg) is @ compact metric space

Let L(2) denote the set of Lipschitz functions on Q

Fact 3. The space dual to (M(2), ||-||xg) is L(2)

Note that (A(A(2)), |- xg) is also a compact metric space



Dual problem

The dual problem is to find a price function p € L(Q2) to

minimize/p(w)duo(w)

? (D)

subject to /p(w)du(w) > V(w) forall p € A(Q).
Q
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Value functions

Let 7(no) and P(V) be the primal and dual sets of feasible solutions.

The concave closure of V at g is the value of the primal problem:

V(o) == sup / V(w)d7(w).
)/ a@)

TET (Ko

V(uo) is the supremum of z such that (z, 1) belongs to the convex
hull of the graph of V on A(Q).

The concave envelope of V at g is the value of the dual problem:

)= f w)d
p$m/p Ho(w).
V(uo) is the infimum at ug of continuous linear functions on M(Q)

that bound V from above on A(Q), because the space L(Q2) is dual to

(M(Q), |Illkr)-
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Interpretation as a production problem

We first interpret the primal problem.

There is Producer designing a production plan.
The set of resources is 2.

Producer’s endowment is pug € A(RQ).

The set of linear production processes A(Q).

Process u € A(Q2) operated at unit level consumes measure p of
resources and generates income V().

Production plan 7 € A(A(2)) describes the level at which each
process u is operated.

The primal problem is to find a production plan 7 € A(A(R2)) that
exhausts endowment ng and maximizes total income.
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Interpretation as a production problem

We now interpret the dual problem.
¢ Dealer wants to buy out the producer.
¢ Dealer sets a unit price p(w) for each resource w € Q.

® Price function p is feasible for Dealer if Producer’s income V(u)
from each process . is below his cost [, p(w)du(w).

® The dual problem is to find feasible prices that minimize the total
cost of buying up all the resources.
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Interpretation as a production problem

We finally decentralize this production economy. A production plan 7
and a price function p constitute a competitive equilibrium if:

1. All resources are used in production:

/ pdT(p) = Ko-

2. Operating processes make zero profits:

/p(w)du(w) = V(u), forall u e supp(T).

3. No entrant can make strictly positive profits:

/p(w)du(w) > V(w), forallue A(Q).
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Interpretation as a production problem

Weak duality is the first welfare theorem. If a pair (7, p) is a
competitive equilibrium, then 7 solves Producer’s problem, and
p solves Dealer’s problem.

This is because, for any feasible T and p, we have

/pduo—/Vd’r:/</pdu—V>d720

Strong duality is the second welfare theorem. Producer’s and
Dealer’s problems admit optimal solutions 7 and p. Any such
solutions constitute a competitive equilibrium.
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Application of duality

Assume that weak duality and strong duality hold.

Assume that supp(uo) = Q.

Weak duality yields sufficient optimality conditions.

Strong duality yields necessary optimality conditions.

Specifically, 7 € T (up) is optimal iff there exists p € L(Q):
[ Plw)du(w) = Viw) orall u  A(g),
Q

/Qp(w)du(w) = V() for all u € supp(T).
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Full disclosure

¢ Full disclosure 7 satisfies supp(7e) = {0 : w € Q}.

¢ By weak duality, full disclosure is optimal if

[ Viu)au(e) = Vip) forall u < A®). F)
Q

¢ Indeed, suppose (F) holds. Given a price function p(w) = V(d),
all operating operating processes make zero profits, and no
entrant can make strictly positive profits, by (F).

¢ By strong duality, if full disclosure is optimal, then (F) holds.

® Indeed, suppose Tf is optimal. Since all operating processes
make zero profit, the price function is given by p(w) = V().
Since no entrant can make strictly positive profits, (F) holds.
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* No disclosure Ty satisfies supp(Tn) = {1o}-

¢ By weak duality, no disclosure is optimal if there exists a price
function p € L(Q2) such that

/Q P(w)dpo(w) = V(uo).

/Q p(w)du(w) > V(w), forall u € AQ).

¢ By strong duality, if no disclosure is optimal, then (N) holds.
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Duality

e Weak duality states that V(uo) < V(uo), that is, the concave
closure is bounded above by the concave envelope.

¢ No duality gap requires the equality V(uo) = V(ug), that is, that
the concave closure and the concave envelope coincide.

¢ Primal and dual attainment additionally require existence of
solutions to the primal and dual problems, respectively.

* We use the term strong duality when there is no duality gap
and both primal and dual attainment hold.
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Weak Duality. V(o) < V(o).

Proof: For all T € T (o) and p € P(V), we have

/. o V) < /. N | pl)auyar) = [ pw)iuole

Finally, take the supremum over 7 (1) and the infimum over P(V).

Remark. Weak duality holds even if V is not u.s.c., as long as it is
measurable and bounded.

Optimality criterion. If 7 € 7(ug) and p € P(V) satisfy
[ Vdr = [ pduo, then T attains V(uo) and p attains V(o).
as, forany ¥ € T(u) and p € P(V),

/Vd%g/pdu,o:/Vd'r and /f)duo Z/VdT:/pduo.



Primal attainment

Primal attainment. The primal problem has an optimal solution.

Proof: Follows from the Weierstrass theorem, because we maximize
bounded upper semi-continuous function 7 — [ Vdr on compact set
T (ko). T(uo) is compact, because it is a closed subset (by continuity
of 7 — [ udT) of a compact set A(A(Q)).
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No duality gap. V(uo) = V(uo).

Proof outline: Uses the Fenchel-Moreau theorem.
® Let E be a normed vector space and E* its topological dual.

® letyp: E— RU{+oc},andlet p*: E* - RU {+o0} be its
Legendre transform.

¢ Fenchel-Moreau Theorem: If ¢ : E — R U {+oc0} is convex and
lower semi-continuous, then o** = .
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No duality gap

Proof outline continued:

¢ Define the function ¢ on M(Q2) as

_ )= suprer(n) Ja) V(R)AT(R), n € AQ),
sin={. 2 e

¢ By direct computation, we have for pug € A(Q),

*x — f d
™" (ko) pelg {/p po(w }

® By the F-M theorem, we get ¢ = ¢** on A(Q).
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Vis superdifferentiable at i, if there is a continuous linear function H
on M(Q2) (supporting hyperplane of V at ), rePresented as
H(uw) = [ pdu with p € L(Q) (supergradient of V at o), such that

~

V(o) = H(ko).
V() < H(w), forall ue A(Q).

I
I

When Q is finite, the concave function V on A(Q) is continuous on
the interior of the domain, and superdifferentiable at all interior points
(full-support priors).
When Q is infinite,

e concavity does not imply continuity on the interior of the domain,

¢ the set A(Q2) has an empty (relative) interior.
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Following Gale (1967), we say that V has bounded steepness at g if
there exists a constant L such that

~

V(w) — V(o) < Ll — wollxm.  for all w € A(Q).

Intuitively, bounded steepness says that the marginal increase in the
value of the persuasion problem is bounded above for a small
perturbation of the prior.
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Dual attainment

Dual Attainment. The following statements are equivalent:

1. The dual problem has an optimal solution.
2. Vis superdifferentiable at ug.
3. V has bounded steepness at uy.

Takeaway: Duality holds without any extra assumptions in finite state
spaces, but additional regularity conditions are needed otherwise.
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Dual attainment

Proof of dual attainment:

® Because we represent the weak* topology using the norm ||-|| g,
we can use the result of Gale (1967).

* By Duality Theorem in Gale (1967), Vis superdifferentiable at ug
if and only if V has bounded steepness at uy.

* Remains to prove that existence of solution to the dual problem
is equivalent to superdifferentiability of V at the prior wp.
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Dual attainment

Vis superdifferentiable at uo = dual attainment:

e Since Vis superdifferentiable at wg, there exists a continuous
linear function H on M(2) such that

V(uo) = /Q p(w)duo(w),

nglfWMMMmeueAmy

® Since (M(Q), ||-||lxr)" = L(2), there exists p € L(Q2) such that...

e Since V(u) < V(u), the second line says that p is feasible; the
first line says that it achieves the lower bound, so p is optimal.

¢ Main takeaway: The optimal price function p is a supergradient
of the concave closure V at the prior py.
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Dual attainment

Dual attainment = V is superdifferentiable at ug:

® Since p € P(V) is optimal, we have p € L(2) and

V(uo) = /Q p()dbo(w).

(% w) < /Qp(w)dp,(w), forall u € A(Q).

e By the absence of duality gap, V(i) = V(o).

e By weak duality, V ) < Jq P(w)du(w) for all w e A(Q), so

® Thus, p is a supergradient of V at o-
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Lipschitz Preservation

Checking bounded steepness of V at Lo can be quite difficult.

Lipschitz Preservation. If V is Lipschitz on A(Q), then so is V.
Thus, V has bounded steepness at each ug € A(R2), ensuring that
the dual problem has an optimal solution.
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Lipschitz preservation

Lemma Let ug, no € A(2) and 7 € T(up). There exists measurable
n: A(Q) — A(Q) such that

. nar =m and [l nw)llgadr(e) = o - ol
A(Q) A(Q)

This gives us the conclusion because, for T attaining V(uo), we have

V(o) = V() < | - viar(u) — [ Vol

A(Q)

g/ Ll — 1)l xm d7(1) = Lltto — ollxa
A(Q)
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Complementary slackness. Let V be Lipschitz. Distribution
T € T (wo) is an optimal solution iff there exists p € P(V) such that
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Complementary slackness

Complementary slackness. Let V be Lipschitz. Distribution
T € T (wo) is an optimal solution iff there exists p € P(V) such that

= /Qp(w)dp,(w), for all u € supp(T). (C)

Proof: The if part follows from weak duality: If (C) holds, then

/. o V) = /. N | ple)autu)ar(e) = [ plu)auoe

The only if part follows from no duality gap and dual attainment: If
T € T(uo) is optimal, then there exists an optimal p € P(V) such that

/A(Q) (/Q p(w)du(w) — V(M)) ar(u) = 0.
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Non-linear persuasion

In non-linear persuasion of Kolotilin, Corrao, and Wolitzky (2023),
states and actions are one-dimensional but the utilities are not linear
in the state.

Duality theorem characterizes optimal signals in terms of the value of
matching different states and actions together.

® Similar to classical matching or optimal transport, except supply
on one side of the market (marginal over actions) is endogenous
and determined by receiver’s obedience condition.

e Useful for characterizing key properties of optimal signals, or
even a unique optimal signal.

* For example, each optimal signal is pairwise under a
non-singularity condition on utilities.
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Non-linear persuasion

® One-dimensional state space Q = [0, 1] and
action space A= [0, 1]

® Twice continuously differentiable Sender’s utility v(a, w) and
Receiver’s utility u(a, w)

e Strictly concave Receiver’s utility (uaa(a, w) < 0) with interior
optimal action a*(u) given by [ ua(a*(i), w)du(w) = 0 for all 4.

Lipschitz property. Indirect utility V(u) = [ v( w)dp(w) is
Lipschitz in i, so general duality applles
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General duality

The primal problem is to find 7 € A(A(Q)) to
maximize / V(w)dr(w)
A(Q)

subject to / pudT(p) = wo,
A(Q)

The dual problem is to find p € L(Q2) to
minimize/ p(w)duo(w)

(D)
subject to V(u /p Ydu(w) for all u € A(RQ).

General duality theorem. If V is Lipschitz in the Kantorovich
Rubinstein metric, then weak duality and strong duality hold.
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Action-based primal problem

Action-based primal is to find a joint distribution m € A(A x Q) to
maximize / v(a, w)dm(a, w)
AxQ

subject to / _dm(a,w) = /~ duo(w) forall Q c Q, (P")
AxQ Q

/~ Us(a w)dm(a w) = 0 for all ACA,
AxQ

® The first constraint is the action-based version of Bayes
plausibility, which says that the marginal of w on Q equals uyg.

® The second constraint is the obedience constraint, which says
that the expected marginal utility equals zero at the
recommended action given the belief it induces.
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Action-based dual problem

Action-based dual is to find p € L(2) and q € B(A) to

minimize /Qp(w)duo(w)

subject to p(w) > v(a,w) + g(a)ua(a, w) for all (a,w) € Ax Q

(D)

Interpretation: Price of state w is no less than Sender’s value from
inducing any action a at this state, where this value is the sum of

e Sender’s utility, v(a, w), and

¢ Value of relaxing obedience at a, q(a), times amount by which
obedience at a is relaxed when ais induced at w, ua(a, w).

First-order approach is key for dual constraint
taking such a simple form.
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Action-based duality

Bridging belief-based and action-based duality. A price function
p € L(Q) is feasible (optimal) for (D) iff there exists q € B(A) such
that (p, q) is feasible (optimal) for (D’).

Proof outline: If (p, q) is feasible for (D’), then, for all © € A(Q),
[ P)u) = [ (va(w).w) + a(a (1) va(a (0) ) ()
Q Q
= [ vt ). w)duw) = Viw),

so p is feasible for (D).
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Proof outline continued: If p is feasible for (D), then, for all wy, wo € Q
and a € A such that us(a wy) < 0 < uy(a, we), feasibility for

b Ua(a, w2) —Ug(a w1)
Ua(a, w) — Ua(a,wy) " Ua(a,wa) — Ua(a, wy)
_ Plwz) —v(awz)  v(awi)— p(wr)
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Action-based duality

Proof outline continued: If p is feasible for (D), then, for all wy, wo € Q
and a € A such that us(a wy) < 0 < uy(a, we), feasibility for

_ Ua(a, wo) —Ug(a, wy)
BT Ua(a,wp) — ta(@ w) ™ Ua(a, wp) — Ua(a, wr)
p(wz) — v(a wz) _ v(a wi)— p(wr)

w2

_— >
Ua(a, w2) B _Ua(a, w1 )
. nf Plwe)—v(aws) sup v(a wi) — p(w1)
wa:Ua(a,w2)>0 Ua(a, wp) w1:Ua(a,wy)<0 —Uga(a, wy)

Thus, we can squeeze in g(a) between the LHS and RHS, so that
p(w) > v(a,w) + g(a)ua(a, w), yielding feasibility for (D’).
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First-order condition for the action-based dual

Given g € B(A), it is optimal for (D’) to set

p(w) = sup{v(a,w) + q(a)ua(a, w)}, forallw € Q.
acA

Strong duality implies that for all . in the support of an optimal 7 and
for all w in the support of u, the first-order condition holds:

Va(a"(u), w) + q(& (1)) Uaa(@" (1), w) + q'(a" (1)) ua(@" (1), w) = 0,

and thus,

oo Euva(at(u) w)]
9@ W) = =5 [eta (), W)



Pairwise Signals

* Asignal 7 is pairwise if each induced posterior u € supp(7) has
at most binary support (| supp(u)| < 2):

p=(1=X)bw+ Ny, forw<w andXel01].

® For example, for uniform ug and any w*, the signal that reveals w
if w < w*, and reveals that the state is either w or 1 + w* — w with
equal probability if w € [w*, 15", is pairwise.

e Full disclosure (supp(7r) = {0, : w € Q}) is pairwise.

® No disclosure (supp(Tn) = {1o}) is not pairwise.



Optimality of pairwise signals

Every optimal signal is pairwise if for all a and w1 < ws < w3, we have

va(a,w1) va(a,wg) Va(a,LU3)
det | Ua(@ wy) Ua(@ w2) us(a ws) | #0. (N)

Uaa(a, 91) Uaa(a, (Uz) Uaa(a, w3)

¢ Follows from the strong-duality FOC, as there do not exist an
action a, three states wy < wp < ws, and a vector (g(a), g'(a)):

va(a, wi) + q(a)uaa(a wi) + q'(a)ua(a, wj), fori=1,2,3.

e (N) holds, for example, if u(a, w) = —(a — w)? and
v(a w) = aw(w) with strictly convex or concave w.

¢ (N) fails in the linear case where U, and V; are linear in 6
(so pooling intervals of states can be optimal in the linear case).



Intuition

1

w2

— a'(u)




Linear persuasion

We now assume that V(u) = v (E,[w]) for all u € A(]O, 1]).

This is a special case of non-linear persuasion with
u(a,w) = —(a— w)? and state-independent v.

Only the distribution 7 of posterior means matters, yvhere n is the
A-marginal distribution of m: n(A) = 7(A, Q) for all A C A.



Primal and Dual

The primal problem simplifies to finding n € A([0, 1]) to
maximize / v(a)dn(a)

subject to n € MPC( o).

The dual problem simplifies to finding p € L(Q2) to

minimize /p(w)duo(w)

subject to pis convex and p > v.

(D7)



