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Motivation

• An explosion of interest in Bayesian persuasion following
Kamenica and Gentzkow (2011)

• Concavification not always tractable

• A number of papers propose duality as a tool to solve
information design problems:

• Kolotilin (2018);
• Dworczak and Martini (2019);
• Dizdar and Kováč (2020);
• Kolotilin, Corrao, and Wolitzky (2025);
• (Galperti, Levkun, and Perego (2023));
• ...



Introduction

• We propose a unified duality approach to persuasion.

• The optimal dual variable, interpreted as a price function, is a
supergradient of the concave closure of the objective
function at the prior belief.

• Our results unify and generalize existing duality results in
persuasion.

• This minicourse introduces methodology and illustrates it in
applications.



Introduction

• We propose a unified duality approach to persuasion.

• The optimal dual variable, interpreted as a price function, is a
supergradient of the concave closure of the objective
function at the prior belief.

• Our results unify and generalize existing duality results in
persuasion.

• This minicourse introduces methodology and illustrates it in
applications.



Introduction

• We propose a unified duality approach to persuasion.

• The optimal dual variable, interpreted as a price function, is a
supergradient of the concave closure of the objective
function at the prior belief.

• Our results unify and generalize existing duality results in
persuasion.

• This minicourse introduces methodology and illustrates it in
applications.



Introduction

• We propose a unified duality approach to persuasion.

• The optimal dual variable, interpreted as a price function, is a
supergradient of the concave closure of the objective
function at the prior belief.

• Our results unify and generalize existing duality results in
persuasion.

• This minicourse introduces methodology and illustrates it in
applications.



Recap of Kamenica and Gentzkow (2011)

Sender chooses a signal/experiment to reveal information about a
state to Receiver, who then takes an action.

• There is a state ω ∈ Ω (compact or finite) with distribution µ0.

• Sender designs a signal:

• Signal realization space S;

• Conditional probability π(s|ω) for each s ∈ S and ω ∈ Ω;

• Receiver chooses action a ∈ A (compact).

• Receiver’s utility is u(a, ω) and Sender’s utility is v(a, ω);
both are continuous
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Belief-based approach

• After observing s, Receiver uses Bayes’ rule to update his belief
from the prior µ0 ∈ ∆(Ω) to the posterior µ ∈ ∆(Ω).

• Given posterior µ, Receiver takes a best-response action

a∗(µ) ∈ argmax
a∈A
Eµ[u(a, ω)],

breaking possible ties in favor of Sender.

• Sender’s indirect utility from posterior µ is

V (µ) = Eµ[v(a∗(µ), ω)].

• A signal π induces a distribution τ over posteriors µ, so Sender’s
expected utility is Eτ [V (µ)].
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Splitting lemma

Lemma. There exists a signal π that induces a distribution of
posteriors τ ∈ ∆(∆(Ω)) iff Eτ [µ] = µ0.

Proof: The only if part follows from the law of iterated expectations.
The if part is shown by construction. Indeed, in the finite case, define,
for all ω ∈ Ω and all µ in supp(τ),

π(µ|ω) =
µ(ω)τ(µ)

µ0(ω)

=⇒ Pr(ω|µ) =
π(µ|ω)µ0(ω)

τ(µ)
= µ(ω).
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Concavification

Sender’s problem is to find a distribution of posteriors τ to

maximize Eτ [V (µ)]

subject to Eτ [µ] = µ0.

Smallest concave function that is everywhere greater than V is called
concave closure of V and is denoted by V̂ .

Concavification. The value of Sender’s problem is V̂ (µ0).



Recap of linear programming

Fix an m × n matrix A, an n-vector b, and an m-vector c.

If the primal problem is to find an m-vector x ≥ 0 to

maximize xc
subject to xA = b,

then the dual problem is to find an n-vector y to

minimize by
subject to Ay ≥ c.



Recap of linear-programming duality

Primal: find x ≥ 0 to
maximize xc

subject to xA = b,

Dual: find y to
minimize by

subject to Ay ≥ c.

Weak duality. If x and y are feasible solutions, then

xc ≤ xAy = by .

Optimality criterion. If feasible solutions x and y satisfy xc = by ,
then they are optimal, as, for any feasible solutions x̃ and ỹ ,

x̃c ≤ by = xc and bỹ ≥ xc = by .

Strong duality. If the primal and dual admit feasible solutions, then
both have optimal solutions x and y , and they satisfy xc = by .
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Primal Problem in Dworczak and Kolotilin (2024)

Find a distribution of posteriors τ ∈ ∆(∆(Ω)) to

maximize
∫
∆(Ω)

V (µ)dτ(µ)

subject to
∫
∆(Ω)

µdτ(µ) = µ0

(P)

where

• (Ω, ρ) is a compact metric space

• µ0 ∈ ∆(Ω) is a prior belief

• V : ∆(Ω)→ R is bounded and u.s.c. in the weak⋆ topology
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Technical Background

• Let M(Ω) be the set of finite signed Borel measures on Ω

• Let ∥·∥KR denote the Kantorovich-Rubinstein norm on M(Ω)

• Fact 1. ∥·∥KR metrizes the weak⋆ topology on ∆(Ω)

• Fact 2. (∆(Ω), ∥·∥KR) is a compact metric space

• Let L(Ω) denote the set of Lipschitz functions on Ω

• Fact 3. The space dual to (M(Ω), ∥·∥KR) is L(Ω)

• Note that (∆(∆(Ω)), ∥·∥KR) is also a compact metric space
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Dual problem

The dual problem is to find a price function p ∈ L(Ω) to

minimize
∫
Ω

p(ω)dµ0(ω)

subject to
∫
Ω

p(ω)dµ(ω) ≥ V (µ) for all µ ∈ ∆(Ω).

(D)



Value functions

Let T (µ0) and P(V ) be the primal and dual sets of feasible solutions.

The concave closure of V at µ0 is the value of the primal problem:

V̂ (µ0) := sup
τ∈T (µ0)

∫
∆(Ω)

V (µ)dτ(µ).

V̂ (µ0) is the supremum of z such that (z, µ0) belongs to the convex
hull of the graph of V on ∆(Ω).

The concave envelope of V at µ0 is the value of the dual problem:

V (µ0) := inf
p∈P(V )

∫
Ω

p(ω)dµ0(ω).

V (µ0) is the infimum at µ0 of continuous linear functions on M(Ω)
that bound V from above on ∆(Ω), because the space L(Ω) is dual to
(M(Ω), ∥·∥KR).
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Interpretation as a production problem

We first interpret the primal problem.

• There is Producer designing a production plan.

• The set of resources is Ω.

• Producer’s endowment is µ0 ∈ ∆(Ω).

• The set of linear production processes ∆(Ω).

• Process µ ∈ ∆(Ω) operated at unit level consumes measure µ of
resources and generates income V (µ).

• Production plan τ ∈ ∆(∆(Ω)) describes the level at which each
process µ is operated.

• The primal problem is to find a production plan τ ∈ ∆(∆(Ω)) that
exhausts endowment µ0 and maximizes total income.
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Interpretation as a production problem

We now interpret the dual problem.

• Dealer wants to buy out the producer.

• Dealer sets a unit price p(ω) for each resource ω ∈ Ω.

• Price function p is feasible for Dealer if Producer’s income V (µ)
from each process µ is below his cost

∫
Ω p(ω)dµ(ω).

• The dual problem is to find feasible prices that minimize the total
cost of buying up all the resources.
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We finally decentralize this production economy. A production plan τ
and a price function p constitute a competitive equilibrium if:

1. All resources are used in production:∫
µdτ(µ) = µ0.

2. Operating processes make zero profits:∫
p(ω)dµ(ω) = V (µ), for all µ ∈ supp(τ).

3. No entrant can make strictly positive profits:∫
p(ω)dµ(ω) ≥ V (µ), for all µ ∈ ∆(Ω).
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Interpretation as a production problem

Weak duality is the first welfare theorem. If a pair (τ, p) is a
competitive equilibrium, then τ solves Producer’s problem, and
p solves Dealer’s problem.

This is because, for any feasible τ and p, we have∫
pdµ0 −

∫
Vdτ =

∫ (∫
pdµ− V

)
dτ ≥ 0

Strong duality is the second welfare theorem. Producer’s and
Dealer’s problems admit optimal solutions τ and p. Any such
solutions constitute a competitive equilibrium.
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Application of duality

• Assume that weak duality and strong duality hold.

• Assume that supp(µ0) = Ω.

• Weak duality yields sufficient optimality conditions.

• Strong duality yields necessary optimality conditions.

• Specifically, τ ∈ T (µ0) is optimal iff there exists p ∈ L(Ω):∫
Ω

p(ω)dµ(ω) ≥ V (µ) for all µ ∈ ∆(Ω),∫
Ω

p(ω)dµ(ω) = V (µ) for all µ ∈ supp(τ).
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Full disclosure

• Full disclosure τF satisfies supp(τF ) = {δω : ω ∈ Ω}.

• By weak duality, full disclosure is optimal if∫
Ω

V (δω)dµ(ω) ≥ V (µ) for all µ ∈ ∆(Ω). (F)

• Indeed, suppose (F) holds. Given a price function p(ω) = V (δω),
all operating operating processes make zero profits, and no
entrant can make strictly positive profits, by (F).

• By strong duality, if full disclosure is optimal, then (F) holds.

• Indeed, suppose τF is optimal. Since all operating processes
make zero profit, the price function is given by p(ω) = V (δω).
Since no entrant can make strictly positive profits, (F) holds.
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No disclosure

• No disclosure τN satisfies supp(τN) = {µ0}.

• By weak duality, no disclosure is optimal if there exists a price
function p ∈ L(Ω) such that∫

Ω
p(ω)dµ0(ω) = V (µ0),∫
Ω

p(ω)dµ(ω) ≥ V (µ), for all µ ∈ ∆(Ω).

(N)

• By strong duality, if no disclosure is optimal, then (N) holds.
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Duality

• Weak duality states that V̂ (µ0) ≤ V (µ0), that is, the concave
closure is bounded above by the concave envelope.

• No duality gap requires the equality V̂ (µ0) = V (µ0), that is, that
the concave closure and the concave envelope coincide.

• Primal and dual attainment additionally require existence of
solutions to the primal and dual problems, respectively.

• We use the term strong duality when there is no duality gap
and both primal and dual attainment hold.
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Weak Duality

Weak Duality. V̂ (µ0) ≤ V (µ0).

Proof: For all τ ∈ T (µ0) and p ∈ P(V ), we have∫
∆(Ω)

V (µ)dτ(µ) ≤
∫
∆(Ω)

∫
Ω

p(ω)dµ(ω)dτ(µ) =
∫
Ω

p(ω)dµ0(ω).

Finally, take the supremum over T (µ0) and the infimum over P(V ).

Remark. Weak duality holds even if V is not u.s.c., as long as it is
measurable and bounded.

Optimality criterion. If τ ∈ T (µ0) and p ∈ P(V ) satisfy∫
Vdτ =

∫
pdµ0, then τ attains V̂ (µ0) and p attains V (µ0),

as, for any τ̃ ∈ T (µ) and p̃ ∈ P(V ),∫
Vdτ̃ ≤

∫
pdµ0 =

∫
Vdτ and

∫
p̃dµ0 ≥

∫
Vdτ =

∫
pdµ0.
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Primal attainment

Primal attainment. The primal problem has an optimal solution.

Proof: Follows from the Weierstrass theorem, because we maximize
bounded upper semi-continuous function τ →

∫
Vdτ on compact set

T (µ0). T (µ0) is compact, because it is a closed subset (by continuity
of τ →

∫
µdτ ) of a compact set ∆(∆(Ω)).



No duality gap

No duality gap. V̂ (µ0) = V (µ0).

Proof outline: Uses the Fenchel-Moreau theorem.

• Let E be a normed vector space and E⋆ its topological dual.

• Let ϕ : E → R ∪ {+∞}, and let ϕ⋆ : E⋆ → R ∪ {+∞} be its
Legendre transform.

• Fenchel-Moreau Theorem: If ϕ : E → R ∪ {+∞} is convex and
lower semi-continuous, then ϕ⋆⋆ = ϕ.
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No duality gap

Proof outline continued:

• Define the function ϕ on M(Ω) as

ϕ(η) =

{
− supτ∈T (η)

∫
∆(Ω) V (µ)dτ(µ), η ∈ ∆(Ω),

+∞, η /∈ ∆(Ω).

• By direct computation, we have for µ0 ∈ ∆(Ω),

ϕ⋆⋆(µ0) = − inf
p∈P(V )

{∫
Ω

p(ω)dµ0(ω)

}
.

• By the F-M theorem, we get ϕ = ϕ⋆⋆ on ∆(Ω).
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Dual attainment

V̂ is superdifferentiable at µ0 if there is a continuous linear function H
on M(Ω) (supporting hyperplane of V̂ at µ0), represented as
H(µ) =

∫
pdµ with p ∈ L(Ω) (supergradient of V̂ at µ0), such that

V̂ (µ0) = H(µ0),

V̂ (µ) ≤ H(µ), for all µ ∈ ∆(Ω).

When Ω is finite, the concave function V̂ on ∆(Ω) is continuous on
the interior of the domain, and superdifferentiable at all interior points
(full-support priors).

When Ω is infinite,

• concavity does not imply continuity on the interior of the domain,

• the set ∆(Ω) has an empty (relative) interior.
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Dual attainment

Following Gale (1967), we say that V̂ has bounded steepness at µ0 if
there exists a constant L such that

V̂ (µ)− V̂ (µ0) ≤ L∥µ− µ0∥KR, for all µ ∈ ∆(Ω).

Intuitively, bounded steepness says that the marginal increase in the
value of the persuasion problem is bounded above for a small
perturbation of the prior.
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Dual attainment

Dual Attainment. The following statements are equivalent:

1. The dual problem has an optimal solution.
2. V̂ is superdifferentiable at µ0.
3. V̂ has bounded steepness at µ0.

Takeaway: Duality holds without any extra assumptions in finite state
spaces, but additional regularity conditions are needed otherwise.
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Dual attainment

Proof of dual attainment:

• Because we represent the weak⋆ topology using the norm ∥·∥KR,
we can use the result of Gale (1967).

• By Duality Theorem in Gale (1967), V̂ is superdifferentiable at µ0
if and only if V̂ has bounded steepness at µ0.

• Remains to prove that existence of solution to the dual problem
is equivalent to superdifferentiability of V̂ at the prior µ0.
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• Since V (µ) ≤ V̂ (µ), the second line says that p is feasible; the
first line says that it achieves the lower bound, so p is optimal.

• Main takeaway: The optimal price function p is a supergradient
of the concave closure V̂ at the prior µ0.
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Lipschitz Preservation

Checking bounded steepness of V̂ at µ0 can be quite difficult.

Lipschitz Preservation. If V is Lipschitz on ∆(Ω), then so is V̂ .
Thus, V̂ has bounded steepness at each µ0 ∈ ∆(Ω), ensuring that
the dual problem has an optimal solution.
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Lipschitz preservation

Lemma Let µ0, η0 ∈ ∆(Ω) and τ ∈ T (µ0).

There exists measurable
η : ∆(Ω)→ ∆(Ω) such that∫
∆(Ω)

η(µ)dτ(µ) = η0 and
∫
∆(Ω)

∥µ− η(µ)∥KR dτ(µ) = ∥µ0 − η0∥KR .

This gives us the conclusion because, for τ attaining V̂ (µ0), we have

V̂ (µ0)− V̂ (η0) ≤
∫
∆(Ω)

V (µ)dτ(µ)−
∫
∆(Ω)

V (η(µ))dτ(µ)

≤
∫
∆(Ω)

L ∥µ− η(µ)∥KR dτ(µ) = L ∥µ0 − η0∥KR .
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Complementary slackness

Complementary slackness. Let V be Lipschitz. Distribution
τ ∈ T (µ0) is an optimal solution iff there exists p ∈ P(V ) such that

V (µ) =

∫
Ω

p(ω)dµ(ω), for all µ ∈ supp(τ). (C)

Proof: The if part follows from weak duality: If (C) holds, then∫
∆(Ω)

V (µ)dτ(µ) =

∫
∆(Ω)

∫
Ω

p(ω)dµ(ω)dτ(µ) =
∫
Ω

p(ω)dµ0(ω).

The only if part follows from no duality gap and dual attainment: If
τ ∈ T (µ0) is optimal, then there exists an optimal p ∈ P(V ) such that∫

∆(Ω)

(∫
Ω

p(ω)dµ(ω)− V (µ)

)
dτ(µ) = 0.
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Persuasion and Matching

Anton Kolotilin & Roberto Corrao & Alexander Wolitzky



Non-linear persuasion

In non-linear persuasion of Kolotilin, Corrao, and Wolitzky (2023),
states and actions are one-dimensional but the utilities are not linear
in the state.

Duality theorem characterizes optimal signals in terms of the value of
matching different states and actions together.

• Similar to classical matching or optimal transport, except supply
on one side of the market (marginal over actions) is endogenous
and determined by receiver’s obedience condition.

• Useful for characterizing key properties of optimal signals, or
even a unique optimal signal.

• For example, each optimal signal is pairwise under a
non-singularity condition on utilities.
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Non-linear persuasion

• One-dimensional state space Ω = [0, 1] and
action space A = [0, 1]

• Twice continuously differentiable Sender’s utility v(a, ω) and
Receiver’s utility u(a, ω)

• Strictly concave Receiver’s utility (uaa(a, ω) < 0) with interior
optimal action a∗(µ) given by

∫
Ω ua(a∗(µ), ω)dµ(ω) = 0 for all µ.

Lipschitz property. Indirect utility V (µ) =
∫
Ω v(a∗(µ), ω)dµ(ω) is

Lipschitz in µ, so general duality applies.
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General duality

The primal problem is to find τ ∈ ∆(∆(Ω)) to

maximize
∫
∆(Ω)

V (µ)dτ(µ)

subject to
∫
∆(Ω)

µdτ(µ) = µ0,

(P)

The dual problem is to find p ∈ L(Ω) to

minimize
∫
Ω

p(ω)dµ0(ω)

subject to V (µ) ≤
∫
Ω

p(ω)dµ(ω) for all µ ∈ ∆(Ω).

(D)

General duality theorem. If V is Lipschitz in the Kantorovich
Rubinstein metric, then weak duality and strong duality hold.
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Action-based primal problem

Action-based primal is to find a joint distribution π ∈ ∆(A× Ω) to

maximize
∫

A×Ω
v(a, ω)dπ(a, ω)

subject to
∫

A×Ω̃
dπ(a, ω) =

∫
Ω̃
dµ0(ω) for all Ω̃ ⊂ Ω,∫

Ã×Ω
ua(a, ω)dπ(a, ω) = 0 for all Ã ⊂ A,

(P’)

• The first constraint is the action-based version of Bayes
plausibility, which says that the marginal of π on Ω equals µ0.

• The second constraint is the obedience constraint, which says
that the expected marginal utility equals zero at the
recommended action given the belief it induces.
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Action-based dual problem

Action-based dual is to find p ∈ L(Ω) and q ∈ B(A) to

minimize
∫
Ω

p(ω)dµ0(ω)

subject to p(ω) ≥ v(a, ω) + q(a)ua(a, ω) for all (a, ω) ∈ A× Ω

(D’)

Interpretation: Price of state ω is no less than Sender’s value from
inducing any action a at this state, where this value is the sum of

• Sender’s utility, v(a, ω), and

• Value of relaxing obedience at a, q(a), times amount by which
obedience at a is relaxed when a is induced at ω, ua(a, ω).

First-order approach is key for dual constraint
taking such a simple form.
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Action-based duality

Bridging belief-based and action-based duality. A price function
p ∈ L(Ω) is feasible (optimal) for (D) iff there exists q ∈ B(A) such
that (p, q) is feasible (optimal) for (D’).

Proof outline: If (p,q) is feasible for (D’), then, for all µ ∈ ∆(Ω),∫
Ω

p(ω)dµ(ω) ≥
∫
Ω
(v(a∗(µ), ω) + q(a∗(µ))ua(a∗(µ), ω))dµ(ω)

=

∫
Ω

v(a∗(µ), ω)dµ(ω) = V (µ),

so p is feasible for (D).
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Action-based duality

Proof outline continued: If p is feasible for (D), then, for all ω1, ω2 ∈ Ω
and a ∈ A such that ua(a, ω1) < 0 < ua(a, ω2), feasibility for

µ =
ua(a, ω2)

ua(a, ω2)− ua(a, ω1)
δω1 +

−ua(a, ω1)

ua(a, ω2)− ua(a, ω1)
δω2

=⇒
p(ω2)− v(a, ω2)

ua(a, ω2)
≥

v(a, ω1)− p(ω1)

−ua(a, ω1)

=⇒ inf
ω2:ua(a,ω2)>0

p(ω2)− v(a, ω2)

ua(a, ω2)
≥ sup
ω1:ua(a,ω1)<0

v(a, ω1)− p(ω1)

−ua(a, ω1)

Thus, we can squeeze in q(a) between the LHS and RHS, so that
p(ω) ≥ v(a, ω) + q(a)ua(a, ω), yielding feasibility for (D’).
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First-order condition for the action-based dual

Given q ∈ B(A), it is optimal for (D’) to set

p(ω) = sup
a∈A
{v(a, ω) + q(a)ua(a, ω)}, for all ω ∈ Ω.

Strong duality implies that for all µ in the support of an optimal τ and
for all ω in the support of µ, the first-order condition holds:

va(a∗(µ), ω) + q(a∗(µ))uaa(a∗(µ), ω) + q′(a∗(µ))ua(a∗(µ), ω) = 0,

and thus,

q(a∗(µ)) =
Eµ[va(a∗(µ), ω)]
−Eµ[uaa(a∗(µ), ω)]

.
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Pairwise Signals

• A signal τ is pairwise if each induced posterior µ ∈ supp(τ) has
at most binary support (| supp(µ)| ≤ 2):

µ = (1− λ)δω + λδω′ , for ω ≤ ω′ and λ ∈ [0, 1].

• For example, for uniform µ0 and any ω∗, the signal that reveals ω
if ω < ω∗, and reveals that the state is either ω or 1 + ω∗ − ω with
equal probability if ω ∈ [ω∗, 1+ω∗

2 ], is pairwise.

0 ω∗ 1+ω∗
2

1

• Full disclosure (supp(τF ) = {δω : ω ∈ Ω}) is pairwise.

• No disclosure (supp(τN) = {µ0}) is not pairwise.



Optimality of pairwise signals

Every optimal signal is pairwise if for all a and ω1 < ω2 < ω3, we have

det

va(a, ω1) va(a, ω2) va(a, ω3)
ua(a, ω1) ua(a, ω2) ua(a, ω3)
uaa(a, θ1) uaa(a, ω2) uaa(a, ω3)

 ̸= 0. (N)

• Follows from the strong-duality FOC, as there do not exist an
action a, three states ω1 < ω2 < ω3, and a vector (q(a), q′(a)):

va(a, ωi) + q(a)uaa(a, ωi) + q′(a)ua(a, ωi), for i = 1, 2,3.

• (N) holds, for example, if u(a, ω) = −(a− ω)2 and
v(a, ω) = aw(ω) with strictly convex or concave w .
• (N) fails in the linear case where Ua and Va are linear in θ

(so pooling intervals of states can be optimal in the linear case).



Intuition

ω1

ω2

ω3

µ1

µ2

← a∗(µ)

µ



Linear persuasion

We now assume that V (µ) = v (Eµ[ω]) for all µ ∈ ∆([0, 1]).

This is a special case of non-linear persuasion with
u(a, ω) = −(a− ω)2 and state-independent v .

Only the distribution η of posterior means matters, where η is the
A-marginal distribution of π: η(Ã) = π(Ã,Ω) for all Ã ⊂ A.



Primal and Dual

The primal problem simplifies to finding η ∈ ∆([0,1]) to

maximize
∫

v(a)dη(a)

subject to η ∈ MPC(µ0).

(P”)

The dual problem simplifies to finding p ∈ L(Ω) to

minimize
∫

p(ω)dµ0(ω)

subject to p is convex and p ≥ v .
(D”)


